

BBj Custom Objects Tutorial

June 1, 2006

By

David Wallwork – Software Architect, BASIS International Ltd.

This tutorial introduces custom objects, which bring the power of object-
oriented programming to the BBj language.

Contents

Introduction

A Simple Custom Object

Private Fields

The USE Statement

Error Handling in Custom Object

Polymorphic Methods

A GUI Example

Using Interfaces

Constructor

Conclusion

© BASIS International Ltd. rev0606 Page 2 of 18 BBj Custom Objects Tutorial

BBj Custom Objects Tutorial

Introduction to BBj Custom Classes
Beginning with version 6.0, BBj® supports custom classes, which enable the BBj programmer to
write object-oriented code. For example, the following program writes "hello world" to the
console:

0010 rem speaker.src
0020 declare Speaker Speaker!
0030 Speaker! = new Speaker()
0040 Speaker!.speak()
0050 stop
0060 class public Speaker
0070 method public void speak()
0080 print "hello world"
0090 methodend
0100 classend

This paper provides a short tutorial on writing object-oriented code in BBj.

A BBj custom class consists of a collection of fields and methods that are defined by the BBj
programmer. A custom object is an instance of a custom class. Custom objects can be used in
BBj code in the same way that Java objects can be used.

This tutorial will discuss several examples without formally defining the specific syntax of each
statement. For more information, refer to the online documentation for the class, classend, field,
interface, interfaceend, method, methodend, and methodret verbs.

This section will provide some general information about custom classes and custom objects.
The remaining sections of this tutorial provide samples that demonstrate how custom objects
work within BBj code. Throughout the sample code we use the declare verb. The declare verb
helps the developer find type-check problems that might result in runtime errors.

The definition of a custom class can be contained within a file that also contains other BBj
program code. As the interpreter moves through a program that contains a custom class
definition it will skip over the custom class definition (class through classend) in the same
way that it will skip over the definition of a user-defined function (def fn through fnend).

An instance of a custom class is created using the new operator just as an instance of a Java
object is created using the new operator. An instance of a custom class is referred to as a custom
object.

A custom class B can extend another custom class A. In this case, we refer to custom class A as
the superclass of custom class B and we refer to custom class B as a subclass of custom class A.

A custom class method defines a variable scope. The only variables that are shared between the
code within a custom class method and the code that called the custom class method are those

http://www.basis.com/onlinedocs/documentation/index.htm#<id=2500
http://www.basis.com/onlinedocs/documentation/index.htm#<id=2503
http://www.basis.com/onlinedocs/documentation/index.htm#<id=2504
http://www.basis.com/onlinedocs/documentation/index.htm#<id=2506
http://www.basis.com/onlinedocs/documentation/index.htm#<id=2502
http://www.basis.com/onlinedocs/documentation/index.htm#<id=2501
http://www.basis.com/onlinedocs/documentation/index.htm#<id=2505
http://www.basis.com/onlinedocs/documentation/index.htm#<id=2507
http://www.basis.com/onlinedocs/documentation/index.htm#<id=2508

© BASIS International Ltd. rev0606 Page 3 of 18 BBj Custom Objects Tutorial

variables that have been passed in the parameter list of the custom class method. The fields of a
custom object are accessible within all methods of the custom object.

The methods of a custom object are invoked by using the dot notation that is common to most
object-oriented languages. A method of a custom class can be public, protected or private. These
protection levels are similar to the protection levels in other object-oriented languages.

The fields of a custom object can be public or private. The fields of a custom object cannot be
accessed using the dot notation that is common to other object-oriented languages. Most code
accesses the fields of a custom object using accessor methods (see the following example). BBj
automatically generates a pair of accessor (get/set) methods for every field. These accessor
methods have the protection level that is declared on the fields being accessed.

The special symbol # is used within the code of a custom object method to access the fields and
the methods of that custom object. Within a method, code uses #fieldName to access a field
whose name is fieldName and #methodName to access a method whose name is
methodName.

Every custom object has an implicit field with the name this!. Code that resides within a non-
static method of a custom object can access this implicit field using the notation #this!. This
implicit field is not accessible to code other than the code within a non-static method of the
custom object. If the custom class that defines a custom object has a superclass, then there is a
second implicit field having the name super! that can be accessed within any non-static
method using the notation #super!. The following sections will provide samples for using
#this! and #super!.

The fields of a custom object are strongly typed. The type of each field is required as part of the
declaration of the field. Similarly, the parameters and return types of all custom object methods
are strongly typed and the return types are required as part of the declaration of the methods.
With this general information, let’s look at some sample code.

A Simple Custom Object: Writing a Check
In this section – We introduce our first custom object. We write a check to Jenny.

This simple program creates an instance of a Check at line 0030 and then prints out the payee’s
name and the amount of the Check at line 0040. The definition of the Check is found at lines
0060 through 0160.

0010 rem ' payable_01.src
0020 declare Check check!
0030 check! = new Check("Jenny Jones", 50.44)
0040 print check!.getPayee()," was paid ",check!.getAmount()
0050 rem ' flow control skips over the class definition
0060 class public Check
0070 field public BBjString Payee$
0080 field public BBjNumber Amount
0090 method public Check(BBjString Payee$, BBjNumber Amount)
0100 #Payee$ = Payee$
0110 #Amount = Amount

© BASIS International Ltd. rev0606 Page 4 of 18 BBj Custom Objects Tutorial

0120 methodend
0130 method public void setAmount(BBjNumber Amount)
0140 print "Amount of a Check can not be set after it is written"
0150 methodend
0160 classend
0170 print " we will now change the payee of the check"
0180 check!.setPayee("Joseph Jones")
0190 print check!.getPayee()," was paid ", check!.getAmount()
0200 print " and we will attempt to change the amount"
0210 check!.setAmount(43223.17)
0220 print check!.getPayee()," was paid ", check!.getAmount()

Some things to notice

• Method names and field names are case sensitive. In the statement, #Payee$ =
Payee$, the field reference #Payee$ is case-sensitive, but Payee$, a traditional
BBx® string variable, is not case-sensitive.

• BBjString fields and parameter names follow string variable naming rules (x$ or x!).

• BBjInt fields and parameter names follow integer variable naming rules (x% or x!).

• BBjNumber fields and parameter names follow numeric variable naming rules (x or x!).

• All other field and parameter names follow object naming rules (x!).

• The class types of all fields are defined in the field statement. The class types of all
method parameters are defined in the method statement. By using the declare statement,
the program can also define the class type of local variables. When a class type has been
defined for a variable BBj will enforce type safety for that variable.

• Because Payee$ and Amount are declared as “public,” the accessors for these fields are
also public and are equivalent to:
method public void setAmount(BBjNumber Amount)
 #Amount = Amount
methodend

method public BBjNumber getAmount()
 methodret #Amount
methodend

method public void setPayee(BBjString Payee$)
 #Payee$ = Payee$
methodend

method public BBjString getPayee()
 methodret #Payee$
methodend

• The developer can override the accessors to define more specific actions.

Private Fields: Derived Classes, Protected and Private Fields
In this section – We create a new class PayrollCheck that is a subclass of Check.

0010 rem ' payable_02.src
0020 class public Check
0030 field private BBjString Payee$
0040 field private BBjNumber Amount
0050 field private BBjNumber NextCheckNumber = 1
0060 field protected BBjNumber CheckNumber
0070 method protected Check(BBjString Payee$, BBjNumber Amount)

© BASIS International Ltd. rev0606 Page 5 of 18 BBj Custom Objects Tutorial

0080 #Payee$ = Payee$
0090 #Amount = Amount
0100 #NextCheckNumber = #NextCheckNumber + 1
0110 methodend
0120 method public BBjNumber getAmount()
0130 methodret #Amount
0140 methodend
0150 method public BBjString getPayee()
0160 methodret #Payee$
0170 methodend
0180 classend
0190 class public PayrollCheck extends Check
0200 field private BBjNumber NetAmount
0210 field private BBjNumber TaxAmount
0220 method public PayrollCheck(BBjString Name$, BBjNumber NetAmount, BBjNumber TaxAmount)
0230 #super!(Name$, NetAmount - TaxAmount)
0240 #NetAmount = NetAmount
0250 #TaxAmount = TaxAmount
0260 methodend
0270 method public BBjNumber getNetAmount()
0280 methodret #NetAmount
0290 methodend
0300 method public BBjNumber getTaxAmount()
0310 methodret #TaxAmount
0320 methodend
0330 classend
0340 declare Check paycheck!
0350 paycheck! = new PayrollCheck("Joe Diamond", 278.35, 73.22)
0360 print paycheck!

Some things to notice

• The methodret verb is used to return a value from a custom object method. If the method
has been declared to return void then there must be no expression following the
methodret. If the method has been declared to have a non-void return type then there
must be an expression following methodret and that expression must evaluate to the
declared return type of the method.

• If a method has been declared to return void, then there is an implicit methodret prior to
the methodend statement. This means that a method will return to the caller when it
reaches the methodend statement. If the method has been declared to have a non-void
return type, then there is no implicit methodret. If the code within a method runs to the
methodend statement, an error will be generated when the methodend statement is
executed.

• The keyword extends is used to create a derived class.

• Methods declared protected can be accessed within derived classes, but methods that
declared private cannot.

• Fields can have an optional initialization expression. If there is no initialization
expression then the initial value of a field is dependent on its type. A field of type
BBjString will be initialized to contain an empty string (""). A field of type BBjNumber
or of type BBjInt will have an initial value of zero. All other fields will be initialized to
null.

• The definition of a custom class must begin with the class statement and end with the
classend statement.

• Every method must begin with a method declaration and end with methodend.

© BASIS International Ltd. rev0606 Page 6 of 18 BBj Custom Objects Tutorial

• Custom object fields that contain the traditional BBx strings are declared as having type
BBjString. Custom objects that contain traditional BBx numbers are declared as
BBjNumbers or as BBjInts.

• The variable paycheck! is declared as a Check but has been assigned a value that is a
PayrollCheck. This is a valid assignment since a PayrollCheck is by declaration a
Check. But since paycheck! is declared as a Check, only the methods of a Check can be
called on paycheck!.

The USE statement: USE and STATIC
In this section – We split a program into two files and introduce the use directive. We
demonstrate the use of static methods.

0010 REM ' accounting_03.src
0020 USE ::payable_03.src::Check
0030 USE ::payable_03.src::PayrollCheck
0040 declare Check aCheck!
0050 declare PayrollCheck bCheck!
0060 declare Check cCheck!
0070 aCheck! = new PayrollCheck("Jenny Jones", 507.44, 189.49)
0080 print aCheck!.getNextCheckNumber()
0090 bCheck! = new PayrollCheck("Timmy Malone", 50.44, 189.49)
0100 print aCheck!.getNextCheckNumber()
0110 print bCheck!.getNextCheckNumber()
0120 print Check.getNextCheckNumber()
0130 print PayrollCheck.getNextCheckNumber()
0140 print "we can create a PayrollCheck but we can not create a Check"
0150 cCheck! = new Check("Jenny Jones", 54884.99)

0010 rem ' payable_03.src
0020 class public Check
0030 field private BBjString Payee$
0040 field private BBjNumber Amount
0050 field private static BBjNumber NextCheckNumber = 1
0060 field protected BBjNumber CheckNumber
0070 method protected Check(BBjString Payee$, BBjNumber Amount)
0080 #Payee$ = Payee$
0090 #Amount = Amount
0100 #NextCheckNumber = #NextCheckNumber + 1
0110 methodend
0120 method public BBjNumber getAmount()
0130 methodret #Amount
0140 methodend
0150 method public BBjString getPayee()
0160 methodret #Payee$
0170 methodend
0180 method public static BBjNumber getNextCheckNumber()
0190 methodret #NextCheckNumber
0200 methodend
0210 classend
0220 class public PayrollCheck extends Check
0230 field private BBjNumber NetAmount
0240 field private BBjNumber TaxAmount
0250 method public PayrollCheck(BBjString Name$, BBjNumber NetAmount, BBjNumber TaxAmount)
0260 #super!(Name$, NetAmount - TaxAmount)
0270 #NetAmount = NetAmount
0280 #TaxAmount = TaxAmount
0290 methodend
0300 method public BBjNumber getNetAmount()
0310 methodret #NetAmount
0320 methodend
0330 method public BBjNumber getTaxAmount()
0340 methodret #TaxAmount

© BASIS International Ltd. rev0606 Page 7 of 18 BBj Custom Objects Tutorial

0350 methodend
0360 classend

Some things to notice

• The use statement tells the program where to find the definition of a custom class that
appears in another file. The program must contain a distinct use statement for each
external custom class that it is going to use.

• The use statement consists of two parts. The first part is a filename surrounded by ::
symbols. The second part is the name of a custom class in that file.

• If the filename contained in the use statement is not an absolute filename, then BBj will
resolve the filename using normal BBj search rules (current working directory and
prefix).

• BBj custom objects support static fields and static methods. In this example, the methods
aCheck!.getNextCheckNumber() and bCheck!.getNextCheckNumber() return the
same value. As more checks are created, the value returned by getNextCheckNumber()
will change.

• The method getNextCheckNumber() can be called on the custom class itself using the
name of the custom class. So Check.getNextCheckNumber() and
PayrollCheck.getNextCheckNumber() return the same value as
aCheck!.getNextCheckNumber() and bCheck!.getNextCheckNumber().

• A static method cannot access non-static fields.

• Static fields and static methods are static within a BBj session. If
accounting_03.src is run in two distinct BBj sessions, then each session will start
with check number 1; the two sessions will increment their check numbers
independently.

• A static field persists throughout the lifetime of a BBj session.

• The keyword extends indicates that the class PayrollCheck is a subclass of the class
Check.

• A method that is private can only be accessed by the declaring class. It cannot be
accessed by derived classes and it cannot be accessed by code outside the class.

• A protected method can be accessed by a derived class whether that derived class is
defined in the same file or in a separate file.

• In accounting_03.src the local variable aCheck! is declared as having type Check.
The local variable bCheck! is declared as having type PayrollCheck. Because
PayrollCheck extends Check, we can assign a new PayrollCheck to aCheck! or to
bCheck!.

• The protected constructor of Check cannot be invoked from the file
accounting_03.src.

http://www.basis.com/onlinedocs/documentation/index.htm#<id=2509

© BASIS International Ltd. rev0606 Page 8 of 18 BBj Custom Objects Tutorial

Error Handling in Custom Object: seterr, setopts, and THROW
In this section – We demonstrate the use of seterr within a custom object method and introduce
the throw verb.

0010 rem errorHandling.src
0020 seterr errorHandler
0030 declare BBjString options$
0040 declare BBjString filename$
0050 declare Foo foo!
0060 input "allow debug in public program? yes=1/no=0 ",allow
0070 options$ = opts
0080 if allow then
0090 options$(1,1) = ior(options$(1,1),08)
0100 print "program will stop on error"
0110 else
0120 options$(1,1) = and(options$(1,1),$f7$)
0130 print "program will go to error handler on error"
0140 endif
0150 setopts options$
0160 filename$ = "ljl;kj;"
0170 foo! = new Foo()
0180 foo!.openFile(filename$)
0190 end
0200 class public Foo
0210 method public void openFile(BBjString filename$)
0220 print "Foo.openFile() opening file: ",filename$
0230 seterr fileOpenError
0240 open (unt)filename$
0250 print "Succeeded opening ",filename$
0260 methodret
0270 fileOpenError:
0280 print "entering error handler for Foo.fileOpenError"
0290 throw "Foo.openFile() could not open file: "+filename$,err
0300 methodend
0310 method public void bar()
0320 throw "throw in bar",22
0330 methodend
0340 classend
0350 errorHandler:
0360 print "entering error handler for program"
0370 print "received error:",errmes(-1)
0380 fileName$ = pgm(-1)
0390 retry

Some things to notice

• Error handling within a method of a custom object is similar to error handling in a called
program. If the setopts bit that allows escape in a called program has been set, then an
error in a called program will cause the program to drop to console. If that bit has not
been set then an error in the program will cause control to return to the calling program.
Setting that bit affects the behavior of custom object methods in the same way. If it is set
then an error in the method will cause the program to drop to console. If it is not set then
an error in a method will cause control to return to the calling program.

• The seterr verb is available within a custom object method. The effect of a seterr within
a method is similar to the effect of a seterr in a called program. The seterr remains in
affect until the method returns.

• By using throw, a program can cause an error to occur programmatically. This allows the
programmer to specify the error number as well as the error message.

http://www.basis.com/onlinedocs/documentation/index.htm#<id=2176
http://www.basis.com/onlinedocs/documentation/index.htm#<id=2092
http://www.basis.com/onlinedocs/documentation/index.htm#<id=2095

© BASIS International Ltd. rev0606 Page 9 of 18 BBj Custom Objects Tutorial

Polymorphic methods: Paying Salaried vs. Commissioned Employees
In this section – We introduce two more derived classes, SalariedEmployee and
CommissionedEmployee, as well as a PayMaster class. PayMaster has two methods for
paying employees; one for paying a salaried employee and another for a commissioned
employee. The caller with an employee in hand can call PayMaster.pay() to generate a check
for either type of employee. PayMaster then manages the differences between paying a salaried
employee and a commissioned employee.

0010 REM ' accounting.src
0020 use ::employee.src::Employee
0030 use ::employee.src::EmployeeIF
0040 use ::employee.src::SalariedEmployee
0050 use ::employee.src::CommissionedEmployee
0060 use ::payable_04.src::PayMaster
0070 use ::payable_04.src::Check
0080 use ::payable_04.src::PayrollCheck
0090 declare PayMaster PayMaster!
0100 PayMaster! = new PayMaster()
0110 declare CommissionedEmployee James!
0120 James! = new CommissionedEmployee("James Dean", 0.16)
0130 James!.addSale(5219)
0140 James!.addSale(811)
0150 declare SalariedEmployee Bob!
0160 Bob!= new SalariedEmployee("Bob Wills", 50000, 2)
0170 Bob!.setRetirementDeduction(225)
0180 declare EmployeeIF Employee!
0190 Employee! = James!
0200 declare Check checkForJames!
0210 checkForJames! = Employee!.getPaid(PayMaster!)
0220 Employee! = Bob!
0230 declare Check checkForBob!
0240 checkForBob! = Employee!.getPaid(PayMaster!)
0250 print "James received check #", checkForJames!.getCheckNumber(),
0260 print " for amount of ", checkForJames!.getAmount()
0270 print "Bob received check #", checkForBob!.getCheckNumber(),
0280 print " for net amount of ", checkForBob!.getAmount()
0290 Employee! = James!
0300 print "Does James receive commission?",PayMaster!.receivesCommission(Employee!)
0310 Employee! = Bob!
0320 print "Does Bob receive commission?",PayMaster!.receivesCommission(Employee!)

0010 rem ' payable_04.src
0020 use ::employee.src::Employee
0030 use ::employee.src::EmployeeIF
0040 use ::employee.src::SalariedEmployee
0050 use ::employee.src::CommissionedEmployee
0060 rem ' ==
0070 class public PayMaster
0080 field public BBjString Name$
0090 field public BBjNumber BonusThreshold = 2000
0100 field private BBjNumber PayPeriodsPerYear = 24
0110 field private BBjNumber StandardDeduction = 200
0120 field private BBjNumber TaxRate = 0.30
0130 method public Check pay(SalariedEmployee Employee!)
0140 Name$ = Employee!.getName()
0150 net = round((Employee!.getSalary()/#PayPeriodsPerYear),2)
0160 ira = Employee!.getRetirementDeduction()
0170 deductions = round(Employee!.getDependents()*#StandardDeduction+ira,2)
0180 tax = round(#TaxRate*(net-ira-deductions),2)
0190 methodret new PayrollCheck(Name$, net, tax)
0200 methodend
0210 method public Check pay(CommissionedEmployee Employee!)
0220 sales = Employee!.getUnpaidSales()
0230 net = round(Employee!.getCommission()*sales,2)
0240 if sales >= #BonusThreshold
0250 net = net + 100

© BASIS International Ltd. rev0606 Page 10 of 18 BBj Custom Objects Tutorial

0260 endif
0270 Employee!.setUnpaidSales(0)
0280 Name$ = Employee!.getName()
0290 methodret new Check(Name$, net)
0300 methodend
0310 method public BBjNumber receivesCommission(EmployeeIF Employee!)
0320 cast(CommissionedEmployee,Employee!,err=not)
0330 methodret 1
0340 not:
0350 methodret 0
0360 methodend
0370 classend
0380 rem ' ==
0390 class public Check
0400 field protected static BBjNumber NextCheckNumber = 1
0410 field private BBjNumber CheckNumber
0420 field public BBjString Payee$
0430 field protected BBjNumber Amount
0440 method public Check(BBjString Payee$, BBjNumber Amount)
0450 #Payee$ = Payee$
0460 #Amount = Amount
0470 #CheckNumber = #NextCheckNumber
0480 #NextCheckNumber = #NextCheckNumber + 1
0490 methodend
0500 method public BBjNumber getAmount()
0510 methodret #Amount
0520 methodend
0530 method public BBjNumber getCheckNumber()
0540 methodret #CheckNumber
0550 methodend
0560 method public static BBjNumber getCheckCount()
0570 methodret #NextCheckNumber
0580 methodend
0590 classend
0600 rem ' ==
0610 class public PayrollCheck extends Check
0620 field protected BBjNumber NetAmount
0630 field protected BBjNumber TaxAmount
0640 method public PayrollCheck(BBjString Name$, BBjNumber NetAmount, BBjNumber TaxAmount)
0650 #super!(Name$, NetAmount-TaxAmount)
0660 #NetAmount = NetAmount
0670 #TaxAmount = TaxAmount
0680 methodend
0690 classend

0010 rem ' ==
0020 rem ' employee.src
0030 rem ' ==
0040 use ::payable_04.src::PayMaster
0050 use ::payable_04.src::Check
0060 class public Employee implements EmployeeIF
0070 field public BBjString Name$
0080 method protected Employee(BBjString Name$)
0090 #Name$ = Name$
0100 methodend
0110 method public Check getPaid(PayMaster PayMaster!)
0120 throw "Base class Employee.getPaid() should never be invoked",17
0130 methodend
0140 classend
0150 rem ' ==
0160 class public SalariedEmployee extends Employee implements EmployeeIF
0170 field private BBjNumber Salary
0180 field public BBjNumber Dependents
0190 field public BBjNumber RetirementDeduction
0200 method public SalariedEmployee(BBjString Name$, BBjNumber Salary, BBjNumber dependents)
0210 #super!(Name$)
0220 #Salary = Salary
0230 #Dependents = Dependents
0240 #RetirementDeduction = 0
0250 methodend

© BASIS International Ltd. rev0606 Page 11 of 18 BBj Custom Objects Tutorial

0260 method public BBjNumber getSalary()
0270 methodret #Salary
0280 methodend
0290 method public Check getPaid(PayMaster PayMaster!)
0300 methodret PayMaster!.pay(#this!)
0310 methodend
0320 classend
0330 rem ' ==
0340 class public CommissionedEmployee extends Employee implements EmployeeIF
0350 field public BBjNumber Commission
0360 field public BBjNumber UnpaidSales
0370 method public CommissionedEmployee (BBjString Name$, BBjNumber Commission)
0380 #super!(Name$)
0390 #Commission = Commission
0400 #UnpaidSales = 0
0410 methodend
0420 method public void addSale(BBjNumber Amount)
0430 #UnpaidSales = #UnpaidSales + Amount
0440 methodend
0450 method public Check getPaid(PayMaster PayMaster!)
0460 methodret PayMaster!.pay(#this!)
0470 methodend
0480 classend
0490 rem ' ==
0500 interface public EmployeeIF
0510 method public Check getPaid(PayMaster PayMaster!)
0520 method public BBjString getName()
0530 interfaceend

Some things to notice

• In accounting_04.src we can pay either employee by calling PayMaster!.pay().
Passing a SalariedEmployee results in a call to the method pay(SalariedEmployee) and
also withholds taxes. When passing a CommissionedEmployee, the method
pay(CommissionedEmployee) is called and no taxes are withheld.

• Because nextCheckNumber() is static in the base class Check, the check numbers for
Checks and PayrollChecks are correctly sequenced.

A GUI Example: Registering Custom Object Methods as Callbacks,
Callbacks Within a Method Body
In this section – We create a simple dialog box that can be called from character code. This
program demonstrates the registering of custom object methods as callbacks and also
demonstrates the use of traditional callbacks (using labels) within a custom object method.

0010 rem dialog.src
0020 open (unt)"X0"
0030 declare Dialog dialog!
0040 declare Reporter reporter!
0050 dialog! = new Dialog()
0060 print "About to show dialog"
0070 dialog!.init()
0080 reporter! = new Reporter()
0090 dialog!.registerEvents(reporter!)
0100 dialog!.show()
0110 print "Button was pushed",dialog!.getClickCount()," times."
0120 escape
0130 print "show it again"
0140 dialog!.init()
0150 dialog!.registerEvents(reporter!)
0160 dialog!.show()
0170 print "finished"
0180 stop

© BASIS International Ltd. rev0606 Page 12 of 18 BBj Custom Objects Tutorial

0190 class public Dialog
0200 field private BBjWindow Window!
0210 field private BBjButton Button!
0220 field private BBjStaticText Text!
0230 field private BBjStaticText Text2!
0240 field private BBjStaticText Counter!
0250 field private BBjInputE InputE!
0260 field private BBjSysGui SysGui!
0270 field private BBjNumber Active = 0
0280 field public BBjNumber ClickCount = 0
0290 method public Dialog()
0300 #SysGui! = bbjapi().getSysGui()
0310 methodend
0320 method public void init()
0330 #Window! = #SysGui!.addWindow(100,10,10,200,220,"Test Dialog")
0340 #Button! = #Window!.addButton(200,50,40,80,40,"Push me")
0350 #Text! = #Window!.addStaticText(201,50,100,80,40,"")
0360 #Text2! = #Window!.addStaticText(202,50,130,80,40,"count: ")
0370 #Counter! = #Window!.addStaticText(203,140, 130, 60,40, "0")
0380 #InputE! = #Window!.addInputE(204, 50, 170, 60,40,"")
0390 #Button!.setCallback(#Button!.ON_BUTTON_PUSH,#this!, "toggle")
0400 methodend
0410 method public void show()
0420 #Window!.setCallback(#Window!.ON_CLOSE, "doReturn")
0430 process_events
0440 doReturn:
0450 #Window!.destroy()
0460 methodRet
0470 methodend
0480 method public void toggle(BBjButtonPushEvent event!)
0490 declare BBjString A$
0500 A$ = "no"
0510 if #Active then
0520 A$ = "yes"
0530 #Active = 0
0540 else
0550 #Active = 1
0560 endif
0570 #Text!.setText(A$)
0580 #ClickCount = #ClickCount + 1
0590 #Counter!.setText(str(#ClickCount))
0600 methodend
0610 method public void registerEvents(Reporter reporter!)
0620 #InputE!.setCallback(#Button!.ON_GAINED_FOCUS,reporter!,"report")
0630 #InputE!.setCallback(#Button!.ON_LOST_FOCUS,reporter!,"report")
0640 methodend
0650 classend
0660 class public Reporter
0670 method public void report(BBjGainedFocusEvent p_event!)
0680 print "focus gained on: ", p_event!.getControl()
0690 methodend
0700 method public void report(BBjSysGuiEvent p_event!)
0710 print "unknown event ", p_event!," reported on ", p_event!.getControl()
0720 methodend
0730 classend

Some things to notice

• A program can register a callback for an event where the callback is a method on a
custom object (as opposed to a label within a program). In this sample we register a
callback for ON_BUTTON_PUSH that causes the method toggle() to be called on the
custom object this!. We also register ON_LOST_FOCUS and ON_GAINED_FOCUS
callbacks with the methods of a different custom object.

• When registering a custom object method for a callback, the method must accept a single
parameter and the event for which the method is being registered must be assignable to
the type of that parameter.

© BASIS International Ltd. rev0606 Page 13 of 18 BBj Custom Objects Tutorial

• We can register the method toggle(BBjButtonPushEvent p_event!) for the
ON_BUTTON_PUSH event because the type of parameter is the same as the type of the
event that is generated.

• We can register the method report(BBjSysGuiEvent p_event!) for the
ON_LOST_FOCUS event because the event that is generated (a BBjLostFocusEvent)
extends the parameter type of BBjSysGuiEvent.

• We cannot register the method toggle(BBjButtonPushEvent p_event!) as the callback
for ON_LOST_FOCUS event because the event that is generated (a BBjLostFocusEvent)
can not be assigned to BBjButtonPushEvent.

• Within a method we can register a label as the callback (as we do in show()) but the label
must be within the method where setCallback is being called. Code within a method can
not find labels that are not within the same method.

• The callback for ON_WINDOW_CLOSE destroys the window and then uses methodret
to return to the calling program. After returning from show(), we are no longer doing
process_events.

• We are able to gather information while displaying the dialog and then retrieve that
information from the dialog after the window has been destroyed.

• A declare statement can be used within a method body (as in Dialog.toggle()) to define
the type of a local variable within that method body.

Defining Interfaces: using Interface, interfaceEnd, and implements
In this section – We define two interfaces Weighable and Edible and a number of custom
classes, all of which implement the Weighable interface and some of which implement Edible.
We create a Scale class that has a single method weigh() that accepts a Weighable and a class
Nutritionist that has one method for measuring Edibles and a different method for measuring
objects that are not Edibles.

0010 rem weight.src
0020 declare Elephant Elephant!
0030 declare Mouse Mouse!
0040 declare Fish Fish!
0050 declare Butterfly Butterfly!
0060 declare Carror Carot!
0070 declare Watermelon Watermelon!
0080 declare Rock Rock!
0090 declare Salt Salt!
0100 declare BBjNumber total
0110 Elephant! = new Elephant()
0120 Mouse! = new Mouse()
0130 Fish! = new Fish()
0140 Butterfly! = new Butterfly()
0150 Carrot! = new Carrot()
0160 Watermelon! = new Watermelon()
0170 Rock! = new Rock()
0180 Bicycle! = new Bicycle()
0190 Salt!= new Salt()
0200 total = 0
0210 total = total + Scale.Weigh(Elephant!)
0220 total = total + Scale.Weigh(Mouse!)
0230 total = total + Scale.Weigh(Fish!)
0240 total = total + Scale.Weigh(Butterfly!)

http://www.basis.com/onlinedocs/documentation/index.htm#<id=32073
http://www.basis.com/onlinedocs/documentation/index.htm#<id=32004

© BASIS International Ltd. rev0606 Page 14 of 18 BBj Custom Objects Tutorial

0250 total = total + Scale.Weigh(Carrot!)
0260 total = total + Scale.Weigh(Watermelon!)
0270 total = total + Scale.Weigh(Rock!)
0280 total = total + Scale.Weigh(Bicycle!)
0290 print
0300 print "Scale has weighed a total of:", total
0310 print
0320 print
0330 input "Press [ENTER] to see what the nutritionist says:",*
0340 print
0350 Nutritionist.Measure(Elephant!)
0360 Nutritionist.Measure(Mouse!)
0370 Nutritionist.Measure(Fish!)
0380 Nutritionist.Measure(Butterfly!)
0390 Nutritionist.Measure(Carrot!)
0400 Nutritionist.Measure(Watermelon!)
0410 Nutritionist.Measure(Rock!)
0420 Nutritionist.Measure(Bicycle!)
0430 Nutritionist.Measure(Salt!)
0440 interface public Weighable
0450 method public BBjNumber getWeight()
0460 method public BBjString Name()
0470 interfaceend
0480 class public Scale
0490 method public static BBjNumber Weigh(Weighable weighable!)
0500 weight = weighable!.getWeight()
0510 print weighable!.Name(), " weighs", weight
0520 methodret weight
0530 methodend
0540 classend
0550 interface public Edible
0560 method public BBjNumber getCalories()
0570 method public BBjString Name()
0580 interfaceend
0590 class public Nutritionist
0600 method public static BBjNumber Measure(Edible food!)
0610 print food!.Name(), " contains ", food!.getCalories(), " calories"
0620 methodret food!.getCalories()
0630 methodend
0640 method public static BBjNumber Measure(java.lang.Object notFood!)
0650 print notFood!, " is not edible"
0660 methodret 0
0670 methodend
0680 classend
0690 class public Animal implements Weighable
0700 field private BBjNumber Mammal
0710 field private BBjNumber Weight
0720 field private BBjString Name$
0730 method protected Animal(BBjString name$, BBjNumber isMammal, BBjNumber weight)
0740 #Name$ = name$
0750 #Mammal = isMammal
0760 #Weight = weight
0770 methodend
0780 method public BBjNumber getWeight()
0790 methodret #Weight
0800 methodend
0810 method public BBjString Name()
0820 methodret #Name$
0830 methodend
0840 classend
0850 class public Flora implements Weighable
0860 field private BBjNumber IsFruit
0870 field private BBjNumber Weight
0880 field private BBjString Name$
0890 method protected Flora(BBjString name$, BBjNumber isFruit, BBjNumber weight)
0900 #Name$ = name$
0910 #IsFruit = isFruit
0920 #Weight = weight
0930 methodend
0940 method public BBjNumber getWeight()
0950 methodret #Weight

© BASIS International Ltd. rev0606 Page 15 of 18 BBj Custom Objects Tutorial

0960 methodend
0970 method public BBjString Name()
0980 methodret #Name$
0990 methodend
1000 classend
1010 class public Elephant extends Animal implements Weighable
1020 method public Elephant()
1030 #super!("Bimbo", 1, 15000)
1040 methodend
1050 classend
1060 class public Mouse extends Animal
1070 method public Mouse()
1080 #super!("Micky", 1, .025)
1090 methodend
1100 classend
1110 class public Fish extends Animal implements Edible
1120 method public Fish()
1130 #super!("Nemo", 0, 2.3)
1140 methodend
1150 method public BBjNumber getCalories()
1160 methodret 185
1170 methodend
1180 classend
1190 class public Butterfly extends Animal
1200 method public Butterfly()
1210 #super!("butterfly", 0, .00004)
1220 methodend
1230 classend
1240 class public Carrot extends Flora implements Edible
1250 method public Carrot()
1260 #super!("carrot", 0, .2)
1270 methodend
1280 method public BBjNumber getCalories()
1290 methodret 13.5
1300 methodend
1310 classend
1320 class public Watermelon extends Flora implements Edible
1330 method public Watermelon()
1340 #super!("watermelon", 1, 3.1)
1350 methodend
1360 method public BBjNumber getCalories()
1370 methodret 137
1380 methodend
1390 classend
1400 class public Rock implements Weighable
1410 method public BBjNumber getWeight()
1420 methodret 5.7
1430 methodend
1440 method public BBjString Name()
1450 methodret "Rock"
1460 methodend
1470 classend
1480 class public Bicycle implements Weighable
1490 method public BBjNumber getWeight()
1500 methodret 23.87
1510 methodend
1520 method public BBjString Name()
1530 methodret "Bicycle"
1540 methodend
1550 classend
1560 class public Bicycle implements Weighable
1570 method public BBjNumber getWeight()
1580 methodret 23.87
1590 methodend
1600 classend
1610 class public Salt implements Edible
1620 method public BBjNumber getCalories()
1630 methodret .0002
1640 methodend
1650 method public BBjString Name()
1660 methodret "Salt"

© BASIS International Ltd. rev0606 Page 16 of 18 BBj Custom Objects Tutorial

1670 methodend
1680 classend

Some things to notice

• The Scale class does not know about Animal or Butterfly, Carrot, or Rock. The only
thing that Scale understands is Weighable. Scale can weigh anything that implements
Weighable.

• If a class (like Animal) implements an interface, then all its subclasses also implement
that interface.

• A class can implement more than one interface.

• When Nutritionist measures an Edible it will tell the calories of the Edible. When
Nutritionist measures any other object it reports that it is not Edible.

Constructor: Order of Execution of Constructors, superConstructor,
Initializers and Static Initializers
In this section – We explore constructors and field initialization. There are number of things the
developer needs to understand about constructors and initializers and the order in which they are
executed.

If the custom class does not explicitly define a constructor, BBj will define a default no-arg
constructor.

If a custom class A has a superclass B, every constructor of A will call a constructor of B. If a
constructor of A does not explicitly call a constructor of B, then BBj will implicitly call the
default no-arg constructor of B. The constructor of B is executed before the constructor of A.

All field initializers of a custom class are executed before the constructor code is executed.

All static field initializers of a custom class are executed before any non-static field initializers
for that custom class.

Static field initializers of a given custom class are only executed once in any BBj session.

0010 class public Vehicle
0020 field public BBjString Color$ = "BLACK"
0030 field protected BBjNumber MaxSpeed = 18
0040 field public BBjString Description$ = str(#SerialNumber) + " Color: " + #Color$ + "
MaxSpeed: " + str(#MaxSpeed)
0050 field protected static BBjNumber SerialNumber = 0
0060 method public BBjNumber getMaxSpeed()
0070 methodret #MaxSpeed
0080 methodend
0090 classend
0100 declare Vehicle transport!
0110 transport! = new Vehicle()
0120 print transport!.getDescription()
0130 class public OldCar extends Vehicle
0140 field public BBjNumber MilesPerGallon = 15
0150 method private OldCar()
0160 methodend
0170 method public OldCar(BBjNumber maxSpeed)

© BASIS International Ltd. rev0606 Page 17 of 18 BBj Custom Objects Tutorial

0180 print "in constructor " + #getDescription()
0190 #setSerialNumber(#getSerialNumber()+1)
0200 #setMaxSpeed(maxSpeed)
0210 methodend
0220 classend
0230 setErr aLabel
0240 declare OldCar aCar!
0250 aCar! = new OldCar()
0260 escape
0270 aLabel:
0280 print " constructor OldCar() not visible"
0290 seterr 0
0300 aCar! = new OldCar(45)
0310 print aCar!.getDescription()
0320 class public NewCar extends OldCar
0330 method private NewCar()
0340 methodend
0350 method public NewCar(BBjNumber maxSpeed)
0360 #super!(maxSpeed)
0370 methodend
0380 method public NewCar(BBjNumber maxSpeed, BBjNumber milesPerGallon)
0390 #this!(maxSpeed)
0400 print "legacy description: ", #getDescription()
0410 #setMilesPerGallon(milesPerGallon)
0420 #setDescription(#newDescription())
0430 print "new description: ", #getDescription()
0440 methodend
0450 method protected BBjString newDescription()
0460 a$ = str(#getSerialNumber()) + " shiny " + #getColor() + " and gets " +
str(#getMilesPerGallon()) + " miles per gallon"
0470 methodret a$
0480 methodend
0490 classend
0500 declare NewCar bCar!
0510 bCar! = new NewCar(95, 48)
0520 print bCar!.getDescription()
0530 class public RaceCar extends NewCar
0540 method public RaceCar(BBjNumber maxSpeed, BBjNumber milesPerGallon)
0550 #super!(maxSpeed)
0560 #setMilesPerGallon(milesPerGallon)
0570 #setColor("RED")
0580 #setDescription(#newDescription())
0590 methodend
0600 classend
0610 declare RaceCar carC!
0620 carC! = new RaceCar(217, 3.2)
0630 print carC!.getDescription()

Some things to notice:

• In the statement transport! = new Vehicle(), we call the default no-arg
constructor. Because this constructor is not defined in the program it was generated by
BBj. A custom class always has a no-arg constructor.

• The field initializers are executed in the order in which they appear. So when
Vehicle.Description$ is initializing, it can use the already initialized values of the fields
Vehicle.Color$ and Vehicle.MaxSpeed.

• Because Vehicle.SerialNumber is a static field, it initializes before
Vehicle.Description$ even though it appears after the Vehicle.Description$ in the code.
So the initializer for VehicleDescription$ is able to access the already initialized value of
Vehicle.SerialNumber.

• The default no-arg constructor for OldCar has been overridden and declared private, so
the statement aCar! = new OldCar() results in an error.

© BASIS International Ltd. rev0606 Page 18 of 18 BBj Custom Objects Tutorial

• The constructor OldCar(BBjNumber maxSpeed) sets the values of
#SerialNumber and #MaxSpeed. Since the constructor is executed after the field
initializers, the values that are set in the constructor are reflected in later calls to
OldCar.getDescription().

• The constructor NewCar(BBjNumber maxSpeed) can explicitly call a specific super
constructor using the syntax #super!(maxSpeed).

• The constructor NewCar(BBjNumber maxSpeed, BBjNumber
milesPerGallon) calls a different constructor of NewCar using the syntax
#this!(maxSpeed).

• A constructor can call methods of the class being constructed. So, for example, the
constructor NewCar(BBjNumber maxSpeed, BBjNumber milesPerGallon)
contains the statement #Description$ = #newDescription(). When the
constructor is complete, the value of Description$ will contain the return value of
newDescription().

Conclusion
Custom objects bring the power of object-oriented programming to the BBx language. This
introduction should contain enough information so that the BBj developer can begin creating and
using custom objects within BBj code.

Post additional questions to bbj-developer@basis.com. To join this discussion forum, subscribe
online.

mailto:bbj-developer@basis.com
http://www.basis.com/support/discussionforums.html
http://www.basis.com/support/discussionforums.html

	Contents
	Introduction
	A Simple Custom Object
	Private Fields
	The USE Statement
	Error Handling in Custom Object
	Polymorphic Methods
	A GUI Example
	Using Interfaces
	Constructor
	Conclusion

