

Tuning Your Code With the Performance Analyzer
By John Schroeder

ith Visual PRO/5® Rev 4.0 and BBj® Rev 2.01, BASIS released a new utility designed to aid in
analyzing your application code for performance bottlenecks. This utility makes use of a new
feature of the SETTRACE verb, which allows you to turn on a timer to get millisecond accuracy
on timing each statement that is executed during the trace. The trace output is directed to a file,

and this file is fed into the new Performance Analyzer (_prof.bbx or _prof.bbj) utility.

Please note that while the examples shown in this article use BBj, you can also use Visual PRO/5 to look
at a trace file from a PRO/5 or Visual PRO/5 system. When trace output is directed to a file, the default
setting is to include the timing information. The default for a trace to the screen is not to include the
timing information. To turn off the timing information when tracing to a file, you can use the following
MODE on your SETTRACE statement:

 SETTRACE(chan,MODE="UNTIMED")

You can turn on the timing information with the mode "TIMED."

Using the timing information in the trace file, the Performance Analyzer (PA) builds a table showing the
number of times each line of code was executed. This table also shows the total elapsed time and the
average elapsed time per line, as well as the percentage of the duration of the run taken up by each line
of code. This useful information can assist you in isolating and removing bottlenecks in your application.
Additionally, a summary page shows the overall timings for each program in the trace run.

There are two programs available from the Cool Stuff section of the BASIS Web page,
www.basis.com/devtools/coolstuff, and in the enclosed Advantage CD, which illustrate the use of the
Performance Analyzer. These are perfSample.bbj and perfSample1.bbj, along with supporting files. The
first program is the original program, which was run through the PA to see where improvements could be
made. The second is a restructured version of the first, which reduces a bottleneck in the original, and
improves overall performance by about 50%.

perfSample.bbj reads a journal entry detail file in general ledger account number sequence. Then it
summarizes the postings for each account. The data is displayed in a grid, as shown in Figure 1.

Figure 1. Journal summary display.

Let's assume that we plan to move this program to an environment where the journal files are very large.

http://legacy.basis.com/advantage/mag-v6n3/news.html
http://legacy.basis.com/advantage/mag-v6n3/index.html
http://legacy.basis.com/advantage/mag-v6n3/goingmobile.html
http://legacy.basis.com/sales/intl-distributors.html#Caribbean,%20Central%20America,%20South%20America
http://legacy.basis.com/sales/intl-resellers.html#Australia,%20New%20Zealand
http://www.basis-europe.eu/
http://www.basis-europe.eu/
http://legacy.basis.com/sales/intl-distributors.html#Canada
http://legacy.basis.com/sales/intl-distributors.html#Caribbean,%20Central%20America,%20South%20America
http://legacy.basis.com/sales/intl-distributors.html#Caribbean,%20Central%20America,%20South%20America
http://legacy.basis.com/sales/intl-distributors.html#Caribbean,%20Central%20America,%20South%20America
http://legacy.basis.com/sales/intl-distributors.html#Caribbean,%20Central%20America,%20South%20America
http://www.basis-europe.eu/
http://www.basis-europe.eu/
http://www.basis-europe.eu/
http://legacy.basis.com/sales/intl-distributors.html#BASIS%20International%20Ltd.
http://www.basis-europe.eu/
http://legacy.basis.com/sales/intl-distributors.html#BASIS%20International%20Ltd.
http://legacy.basis.com/sales/intl-distributors.html#BASIS%20International%20Ltd.
http://www.basis-europe.eu/
http://legacy.basis.com/sales/intl-distributors.html#Caribbean,%20Central%20America,%20South%20America
http://legacy.basis.com/sales/intl-distributors.html#BASIS%20International%20Ltd.
http://legacy.basis.com/sales/intl-distributors.html#Sweden,%20Finland,%20Norway,%20Denmark
http://www.basis-europe.eu/
http://legacy.basis.com/sales/intl-distributors.html#Caribbean,%20Central%20America,%20South%20America
http://www.basis.com/
http://www.basis.com/index.html
http://legacy.basis.com/company/sitemap.html
http://legacy.basis.com/company/contactus.html
http://legacy.basis.com/partners/index.html
http://legacy.basis.com/showcase/index.html
http://legacy.basis.com/products/index.html
http://legacy.basis.com/sales/index.html
http://legacy.basis.com/solutions/index.html
http://legacy.basis.com/support/index.html
http://legacy.basis.com/events/index.html
http://legacy.basis.com/company/index.html
https://www.poweredbybbj.com/
http://legacy.basis.com/advantage/index.html
http://legacy.basis.com/advantage/issues.html
http://legacy.basis.com/advantage/subs.html
http://legacy.basis.com/advantage/mediakit.html
http://legacy.basis.com/advantage/rates.html
http://legacy.basis.com/advantage/articleindex.html
https://www.basis.com/advantage/mag-v14n1/index.html
https://www.basis.com/advantage/mag-v14n1/index.html
http://www.basis.com/advantage/issues.html
http://www.basis.com/index.html
http://legacy.basis.com/advantage/index.html
http://legacy.basis.com/advantage/mag-v6n3/index.html
http://www.basis.com/devtools/coolstuff

We want to be sure it is as efficient as possible, so we will use the PA to determine if there are areas of
code where the performance can be improved.

Let's set up the program perfSample.bbj, so it can be used with the PA. To do this we need to start a
trace to a file while the program is running and then turn off the trace. The program, manageTrace.bbj
(Figure 2), can be used to create a file and start/stop the trace.

Figure 2. manageTrace.bbj.

This program can be called with one of two labels, startTrace or stopTrace. The procedure is to call it to
start the trace at a point near the suspected bottleneck, and to end the trace after that process is
finished.

The segment from perfSample.bbj illustrates the use of the manageTrace.bbj public program.

Rather than put the file and trace management code into the application, it may be easier to use a
program like manageTrace.bbj to handle starting and stopping the trace.

 Figure 3. perfSample.bbj with calls to manageTrace.bbj.

Figure 3 shows the code from perfSample.bbj with the calls to manageTrace.bbj encompassing the
code that reads in the journal detail information and loads the output grid.

When we run the program we get a trace file, which looks like this:

 [11] EXIT

 >EXITING TO: perfSample.bbj

 {0.54}{0.52}

 [78] REPEAT

 {0.72}{0.18}

 [79] READ (det,KNUM=1,KEY=startKey$,DOM=*NEXT)

 {1.21}{0.48}

 [80] LET account$="",account$=key(det,END=endOfFile),account$=account$(1,6)

 {1.97}{0.76}

 [81] LET recs_exist=BBj!.TRUE

 >JAVA: com.basis.bbj.proxies.BBjProxy.TRUE returns int

 {2.46}{0.48}

 [83] WHILE recs_exist

 {2.67}{0.2}

 [84] LET DET$=""

 {2.84}{0.17}

 [85] READ RECORD (det,END=endAccount)det$

 {3.12}{0.28}

The number in the square brackets at the beginning of the program line is the relative line number in the
program file. The programs run and called in this example are unnumbered BBj programs. If they were
numbered, the program line numbers would be listed instead of the relative numbers. The major
difference between this trace and an ordinary trace is the timing information that appears after each line.
The numbers in the braces show the total elapsed time and the elapsed time used in executing the
preceding statement. All times are given in milliseconds.

http://legacy.basis.com/advantage/mag-v6n3/pafigure3_lge.html

Now that we've run the program and saved the trace output, it is time to use the PA. The main PA screen
is illustrated in Figure 4.

Figure 4. Main Performance Analyzer window.

Using the File|Open menu, we select a text file that has been created by the trace run. When we open
the text file, the PA summarizes the data into the grid. The data can be sorted by any of the columns in
the grid. Initially, we will sort by the Percent column so that the lines appear in descending order, by the
percentage of the total elapsed time. Using the text file created in the trace run described in Figure 4 and
sorting by descending percentage, we get the results shown in Figure 5.

 Figure 5. Performance Analyzer result table for perfSample.bbj.

The table in Figure 5 was generated by the PA, which read the data from the trace file and summarized
it in the table. Depending on the size of the trace, this can be a lengthy process. You will probably need
to view the data for a given run more than once. To make this easier for you we have included a Save
option on the File menu. This allows you to save the summary information into a file with the extension
.pro, as shown in the title bar in Figure 5. This file is an MKEYED file and can be read into the grid very
quickly for review.

The result table in Figure 5 shows that a lot of time was taken up in reading the data from the detail file,
reading the description from the master file, and moving the data into the grid. We cannot eliminate this
code. Each line is necessary for the program to function properly. However, we can reorganize the code
to make it more efficient. If we look at the innermost while/wend loop, we see that the lines that read the
GL Master file and those that move the account info into the grid are in this loop. Since the account
information itself does not change in this loop, it can be moved outside the loop. Also, the total is
accumulated as the detail records are read, so it isn't necessary to continually update the grid with the
total until all the records for a particular account have been read in and totaled. Let's move these lines to
the outermost repeat/until loop as shown in Figure 6.

http://legacy.basis.com/advantage/mag-v6n3/pafigure4_lge.html
http://legacy.basis.com/advantage/mag-v6n3/pafigure5_lge.html

 Figure 6. Move these lines to the outermost repeat/until loop.

Now run the program again and analyze the trace output to see if there is any improvement. The results
are shown in Figure 7.

 Figure 7. Performance Analyzer result table for second trace run.

The results show that the lines, which move the data into the grid, while taking approximately the same
amount of time per line as in the previous case, are now executed only 14 times, instead of 153 times, as
was true previously. Additionally, the READ on the master file has fallen off the first page of the chart,
indicating that its contribution is significantly smaller. We can confirm this by looking at the summary tabs
for each run. These are shown in Figure 8.

Figure 8. Summary table for first run.

As Figure 8 shows, the total time for the first run was 801 milliseconds. The second run, shown in Figure 9
presents a total time of 337 milliseconds for a savings of more than 50%.

http://legacy.basis.com/advantage/mag-v6n3/pafigure6_lge.html
http://legacy.basis.com/advantage/mag-v6n3/pafigure7_lge.html
http://legacy.basis.com/advantage/mag-v6n3/pafigure8_lge.html

Figure 9. Summary table for second run.

Guided by the Performance Analyzer, we have reorganized the code to run more efficiently. It's easy to
see that using the new Performance Analyzer can help isolate performance bottlenecks and enable you to
tune your application code for best performance.

The code in this article is available on the Advantage CD and also on our website at:
www.basis.com/devtools/coolstuff/index.html

http://legacy.basis.com/advantage/mag-v6n3/news.html
http://legacy.basis.com/advantage/mag-v6n3/index.html
http://legacy.basis.com/advantage/mag-v6n3/goingmobile.html
http://legacy.basis.com/advantage/mag-v6n3/pafigure9_lge.html
http://www.basis.com/devtools/coolstuff/index.html
http://www.linkedin.com/companies/292105/BASIS%20International%20Ltd.
http://twitter.com/BASISIntl
http://www.facebook.com/pages/Albuquerque-NM/BASIS-International-LTD/136855542664
http://www.youtube.com/user/BASISIntl
http://legacy.basis.com/company/legal/copyright.html
http://legacy.basis.com/company/contactus.html

	basis.com
	BASIS International, Ltd. - Tuning Your Code With the Performance Analyzer

