

Practical Ports And Serviceable Sockets
By Nick Decker

We've written about using TCP/UDP sockets in PRO/5®, Visual PRO/5® and
BBj® before, but as time goes on, we invariably think of new ways to use them.
On the BASIS demo CD, for example, we include server and client programs that
utilize sockets to communicate with one another. These programs do a good job
demonstrating sockets in general, how to write client and server programs, and
even give an example of a user-defined protocol between the two. This article
takes sockets in a different direction - writing a socket client that communicates
with pre-established servers using pre-defined protocols. The two programs
discussed in this article function as clients to a POP mail server and to an FTP
server.

Although you probably don't want to reinvent the wheel and write your own client applications, these
examples can still be useful, as they demonstrate how BBj interacts with networked servers in ways not
previously covered. They also explain how to incorporate some of the basic functionality of more complex
client applications into your application. For example, you may not want or need all of the bells and
whistles provided by a full-blown web browser or FTP client. However, you could use BBj programs
similar to these examples to provide a means for your application to query your web or FTP site and to
determine if updates are available. If they are available, you can arrange for an automatic download.
Features such as these enhance your application in many ways, and the fact that all of the functionality is
integrated into your application is even more appealing. There's no need to rely on specific client software
to exist on a workstation, and no distracting third-party applications will pop up on the user's desktop.

Additionally, these program examples provide insight on how to use sockets in BBj in a variety of different
ways, and perhaps in ways you never considered. With sockets you can communicate with almost any
TCP or UPD-based server, regardless of whether it's a web server, FTP server, mail server, etc. By
accessing servers like this, you can send and retrieve email, download web pages and files, obtain news
and weather information, get stock quotes, track packages, and more!

Before digging into the programs themselves, it's worth mentioning that they're fairly basic client
implementations. They are not fully-featured nor do they do much in the way of error handling, as that
would add to their complexity and detract from their value as learning tools. They also take advantage of
some BBj-specific features, such as symbolic labels (*NEXT) and the MASK function's regular expression
operators for this same reason. However, they can be adapted to run in PRO/5 with little effort. There are
also some links at the end of this article that provide all of the necessary information regarding the POP
and FTP protocols.

pop.lst Program
The pop.lst program (Figure 1) is fairly straightforward due to the simplistic nature of the POP3 protocol.
As a brief overview, it establishes a TCP connection to the mail server, sends the desired login and
password, and then retrieves the account's number and size of unread mail messages. All of the
communications between the BBj socket client program and the POP mail server are done via an
alternating exchange of commands and responses.

The pop.lst program initiates the connection to the server by opening a TCP socket connection. This is
accomplished with the OPEN statement to the "N0" alias line. The "N0" alias line exists in the config.bbx
file as:

 ALIAS N0 tcp "" NODELAY

http://legacy.basis.com/advantage/mag-v6n3/roadscholar.html
http://legacy.basis.com/advantage/mag-v6n3/index.html
http://legacy.basis.com/advantage/mag-v6n3/news.html
http://legacy.basis.com/sales/intl-distributors.html#Caribbean, Central America, South America
http://legacy.basis.com/sales/intl-resellers.html#Australia, New Zealand
http://www.basis-europe.eu/
http://www.basis-europe.eu/
http://legacy.basis.com/sales/intl-distributors.html#Canada
http://legacy.basis.com/sales/intl-distributors.html#Caribbean, Central America, South America
http://legacy.basis.com/sales/intl-distributors.html#Caribbean, Central America, South America
http://legacy.basis.com/sales/intl-distributors.html#Caribbean, Central America, South America
http://legacy.basis.com/sales/intl-distributors.html#Caribbean, Central America, South America
http://www.basis-europe.eu/
http://www.basis-europe.eu/
http://www.basis-europe.eu/
http://legacy.basis.com/sales/intl-distributors.html#BASIS International Ltd.
http://www.basis-europe.eu/
http://legacy.basis.com/sales/intl-distributors.html#BASIS International Ltd.
http://legacy.basis.com/sales/intl-distributors.html#BASIS International Ltd.
http://www.basis-europe.eu/
http://legacy.basis.com/sales/intl-distributors.html#Caribbean, Central America, South America
http://legacy.basis.com/sales/intl-distributors.html#BASIS International Ltd.
http://legacy.basis.com/sales/intl-distributors.html#Sweden, Finland, Norway, Denmark
http://www.basis-europe.eu/
http://legacy.basis.com/sales/intl-distributors.html#Caribbean, Central America, South America
http://www.basis.com/
http://www.basis.com/index.html
http://legacy.basis.com/company/sitemap.html
http://legacy.basis.com/company/contactus.html
http://legacy.basis.com/partners/index.html
http://legacy.basis.com/showcase/index.html
http://legacy.basis.com/products/index.html
http://legacy.basis.com/sales/index.html
http://legacy.basis.com/solutions/index.html
http://legacy.basis.com/support/index.html
http://legacy.basis.com/events/index.html
http://legacy.basis.com/company/index.html
https://www.poweredbybbj.com/
http://legacy.basis.com/advantage/index.html
http://legacy.basis.com/advantage/issues.html
http://legacy.basis.com/advantage/subs.html
http://legacy.basis.com/advantage/mediakit.html
http://legacy.basis.com/advantage/rates.html
http://legacy.basis.com/advantage/articleindex.html
https://www.basis.com/advantage/mag-v14n1/index.html
https://www.basis.com/advantage/mag-v14n1/index.html
http://www.basis.com/advantage/issues.html
http://www.basis.com/index.html
http://legacy.basis.com/advantage/index.html
http://legacy.basis.com/advantage/mag-v6n3/index.html

Because the alias line is generic, the OPEN statement includes the hostname of the mail server and the
port on which you'll be talking. Port 110 is the default for POP-based mail servers, so that is what is used
in this example.

Once the connection is opened to the server, the program enters the REPEAT-UNTIL looping construct
that is responsible for guiding the subsequent conversation between the two. Because the server sends a
greeting upon connection, the loop starts off with an INPUT from the socket channel. This reads in data
that was sent by the mail server and assigns it to the tcpData$ string variable.

The next step is to analyze what was returned by the server. The POP protocol dictates that the server
will always preface messages with a "-ERR" in the case of an error and a "+OK" for everything else.
Therefore, the program does a quick check to see if the server returned a POP error or not. If there was
a problem, such as an incorrect password for the specified login, the program prints out the error
message, closes the socket connection and exits. In all other cases, the "+OK" is assumed, and the
program continues.

Since the communication between the client and server follows a structured series of events, the program
goes from event to event via a series of numbered states. This lends itself nicely to the SWITCH verb and
makes the code easy to follow. As the program executes, it follows the pattern of sending a command to
the server, verifying that it got a successful response, and moving on to the next command.

The command of particular interest is the STAT command. It instructs the server to respond with the total
number of mail messages on the server and the size of the messages. The format of the response will be
"+OK xx yy", where xx is the number of messages and yy is the total size of the messages. These
numbers are parsed out of the return message and printed out. Once this has been done, the program
sends a QUIT command to the server.

There's more to the POP protocol than demonstrated in this article, and the program could easily be
enhanced to download e-mail messages and even delete them from the server.

Figure 1. pop.lst listing:

REM Initial Setup
dim mail$:"Description:C(30),Server:C(30),Login:C(30),Password:C(30)"
mail.Description$ = "Work Account"
mail.Server$ = "myserver.mycompany.com"
mail.Login$ = "mylogin"
mail.Password$ = "mypassword"
POP3_CONNECT = 0
POP3_USER = 1
POP3_PASS = 2
POP3_STAT = 3
POP3_QUIT = 4
POPState = POP3_CONNECT

REM Open a socket connection to the Mail Server
tcpChan = unt
open(tcpChan,mode="host=" + cvs(mail.Server$,3) + ",port=110",err=noServerAvailable)"N0"
print "Connected to mail server '"+ cvs(mail.Server$,3) + "'..."

REM Communicate with the host
Repeat

 input (tcpChan) tcpData$
 if tcpData$(1,1) = "-" then

 REM We got an error from the POP server
 print "POP error: ",tcpData$
 goto closeConnection

 else

 REM Since we didn't get a -ERR, we must have a +OK response
 switch POPState

 case POP3_CONNECT
 REM Send the server the login information
 POPState = POP3_USER
 print(tcpChan) "USER " + cvs(mail.Login$,3)
 print "Sent login information..."
 break

 case POP3_USER
 REM Send the server the password information
 POPState = POP3_PASS
 print(tcpChan) "PASS " + cvs(mail.Password$,3)
 print "Sent password information..."
 break

 case POP3_PASS
 REM Request message information
 POPState = POP3_STAT
 print(tcpChan) "STAT"
 print "Requested statistics..."
 break

 case POP3_STAT
 REM Ensure we got a valid string back from the server
 if (mask(tcpData$,"^\+OK\s\d+\s\d+")) then

 pos1 = mask(tcpData$,"\s\d+\s")
 print "There are" + tcpData$(pos1,tcb(16)),
 print "unread email messages totaling ",
 print cvs(tcpData$(pos1+tcb(16)),3) + " bytes"

 endif
 POPState = POP3_QUIT
 print(tcpChan) "QUIT"
 print "Sent quit command..."
 break

 swend

 endif

until POPState = POP3_QUIT

REM Closing connection to server
closeConnection:
close(tcpChan)
print "Connection to server closed."
end

REM Connection failure
noServerAvailable:
print "Failed to connect to the mail server '" + cvs(mail.Server$,3) + "'."
end

Output of the pop.lst program

==

Connected to mail server 'myserver.mycompany.com'...

Sent login information...

Sent password information...

Requested statistics...

There are 2 unread email messages totaling 2567 bytes

Sent quit command...

Connection to server closed.

ftp.lst Program
The ftp.lst program (Figure 2) is very similar to the pop.lst program in Figure 1. It also establishes a
connection to a server and exchanges a series of commands and responses. However, the FTP protocol
is a bit more involved as it requires two sockets - one for commands and one for data.

The program starts out with initialization, which involves creating the empty target file on the local drive.
In this example, the target file is downloaded from the FTP server, and it is the Windows port of BBj from
the nightly builds section on the BASIS FTP site.

Once the login and password are sent and accepted, the server responds with a welcome message
which can be several lines long. The program looks for a "230" in return, which signifies the acceptance
of the login and the last line of the welcome message. After the program logs in, it changes to the
desired download directory, specifies a binary download type, and gives the server the PASV command.
This command tells the server to go into passive mode, which means that it will determine a free, non-
default port to listen for the data connection. This allows the program to make another TCP socket
connection to the FTP server and download the desired file from it on that port. The key here is that the
FTP server is still acting as the TCP server, and the program is still acting as a client to the server. If the
server were not put into passive mode, it would require the program to act as a TCP server on the
default port, and the FTP server would then act as a client, connect to the port, and send the data.

The next step is to request the file via the RETR command and determine the port on which it should
connect to the FTP server for the transfer of data. The port is computed using the return message from
the PASV command which is in the format of:

227 Entering Passive Mode (h1,h2,h3,h4,p1,p2)

The h's specify the internet host address, and the p's specify the data port. p1 is the high order byte, and
p2 is the low order byte of the 16-bit port, so the decimal form is calculated by multiplying p1 by 256 and
adding that value to p2.

Once the port is constructed, the program opens a second TCP socket connection to the same server on
the new port. Because this port is dedicated to the transfer of data instead of commands, the program
immediately goes into a read/write loop. It reads the data from the byte-oriented channel and writes it
directly out to the target file on the local drive. When it hits an end-of-file on the read, it closes the two
channels, cleans up and exits. The result is an exact copy of the 2166000.exe file that exists on the
BASIS FTP server.

Figure 2. ftp.lst listing:

REM Initial Setup
dim ftp$:"Description:C(30),Server:C(30),Login:C(30),Password:C(30)"
ftp.Description$ = "BASIS FTP Server"
ftp.Server$ = "ftp.basis.com"
ftp.Login$ = "anonymous"
ftp.Password$ = "me@mycompany.com"
FTP_CONNECT = 0
FTP_USER = 1
FTP_PASS = 2
FTP_TYPE = 3
FTP_PASV = 4
FTP_LIST = 5
FTP_RETR = 6
FTP_QUIT = 7
FTPState = FTP_CONNECT

REM Setup downloaded file
erase "\2166000.exe",ERR=*NEXT
string "\2166000.exe"

fileChan=unt
open(fileChan,isz=-1)"\2166000.exe"

REM Open a socket connection to the FTP Server
tcpChan = unt
open(tcpChan,mode="host=" + cvs(ftp.Server$,3) + ",port=21",err=noServerAvailable)"N0"
print "Connected to FTP server..."

REM Communicate with the host
Repeat

 input (tcpChan) tcpData$
 if len(tcpData$)=0 then FTPState = FTP_QUIT

 switch FTPState

 case FTP_CONNECT
 REM Send the server the login information
 FTPState = FTP_USER
 print(tcpChan) "USER " + cvs(ftp.Login$,3)
 print "Sent login information..."
 break

 case FTP_USER
 REM Send the server the password information
 FTPState = FTP_PASS
 print(tcpChan) "PASS " + cvs(ftp.Password$,3)
 print "Sent password information..."
 break

 case FTP_PASS
 REM Bypass message information, CD to the BBj-Developer area
 if (pos("230 " = tcpData$)) then
 FTPState = FTP_TYPE
 print(tcpChan)"CWD /private/bbj-developer/current/windows"
 print "Changed directory..."
 endif
 break

 case FTP_TYPE
 REM Set binary transfer
 FTPState = FTP_PASV
 print(tcpChan)"TYPE i"
 print "Forced binary transfer mode..."
 break

 case FTP_PASV
 REM Tell the server to give me a port to retrieve the file on
 FTPState = FTP_RETR
 print(tcpChan)"PASV"
 print "Forced passive mode..."
 break

 case FTP_RETR
 REM Initiate file transfer
 FTPState = FTP_QUIT
 print(tcpChan)"retr 2166000.exe"

 REM Determine which port the Server specified as the data port to retrieve the file
 dataPort$ = tcpData$(mask(tcpData$,"\d+,\d+\)"),tcb(16)-1)
 dataPort$ = str((num(dataPort$(1,mask(dataPort$,",")-1)) * 256) +
num(dataPort$(mask(dataPort$,",")+1)))

 print "Server specified port ",dataPort$
 print "Retrieving 2166000.exe",

 REM Open up a new connection to the server on the data port and download the file
 dataChan = unt
 open(dataChan,mode="host=" + cvs(ftp.Server$,3) +
",port="+dataPort$,err=noServerAvailable)"N0"
 retrieveFile:
 read record(dataChan,siz=-10240,end=retrieveComplete) temp$
 write record(fileChan) temp$
 print ".",
 goto retrieveFile
 retrieveComplete:
 print " "
 print "File transfer complete!"
 close (dataChan)
 close (fileChan)
 break

 case FTP_QUIT
 REM We're done - send the server the quit command.
 print(tcpChan) "QUIT"
 print "Sent quit command..."
 break

 swend

until FTPState = FTP_QUIT

REM Closing connection to server
closeConnection:
close(tcpChan)
print "Connection to server closed."
end

REM Connection failure
noServerAvailable:
print "Failed to connect to the ftp server '" + cvs(ftp.Server$,3) + "'."
end

Output of the ftp.lst program

==

Connected to FTP server...

Sent login information...

Sent password information...

Changed directory...

Forced binary transfer mode...

Forced passive mode...

Server specified port 52966

Retrieving 2166000.exe...

...

...

...

File transfer complete!

Connection to server closed.

Sockets offer a great deal of potential when it comes to communicating with other machines, servers, and
programs all over the world. Because they can do so much, it is sometimes difficult to imagine the many
ways in which sockets can be used to enrich your applications. These sample programs will hopefully
spark your imagination and give you ideas on new ways to use sockets to their fullest potential.

http://legacy.basis.com/advantage/mag-v6n3/programmerplatform.html[8/12/2011 2:39:28 PM]

The code in this article is available on the Advantage CD and also on our web site at:
 www.basis.com/devtools/coolstuff/index.html
For further information on the POP and FTP protocols, see:

http://www.faqs.org/rfcs/rfc1939.html
http://www.faqs.org/rfcs/rfc959.html
http://legacy.basis.com/advantage/mag-v6n3/roadscholar.html
http://legacy.basis.com/advantage/mag-v6n3/index.html
http://legacy.basis.com/advantage/mag-v6n3/news.html
http://www.basis.com/devtools/coolstuff/index.html
http://www.linkedin.com/companies/292105/BASIS%20International%20Ltd.
http://twitter.com/BASISIntl
http://www.facebook.com/pages/Albuquerque-NM/BASIS-International-LTD/136855542664
http://www.youtube.com/user/BASISIntl
http://legacy.basis.com/company/legal/copyright.html
http://legacy.basis.com/company/contactus.html

	basis.com
	BASIS International, Ltd. - Practical Ports And Servicable Sockets

	dyYW1tZXJwbGF0Zm9ybS5odG1sAA==:
	form2:
	q:
	sa:

