
Implementing Journaled Files And
Transaction Tracking In BBj 2.0
By John Schroeder and Chris Hardekopf

One of the most powerful additions to BBj® in Revision 2.0 is
the Journaled File System, which allows you to safeguard your
data and preserve its integrity. Journaled files and
transactions allow applications to process a set of file

operations without risking the loss of any of the set due to a system crash. A journaled
system with transactions controls the process of grouping file operations so that either
all operations (i.e. all the multiple disk writes required to update a record) are on disk
or no operations are on disk.

The principal benefit of journaled files is their resistance to corruption. Because all
operations on journaled files are atomic-operations either completely succeed or
completely fail-no operation is ever half-completed, thereby corrupting the file.

Transactions build on this characteristic of journaled files, enabling the application
programmer to define sets of operations to be treated as a single operation on one or
more files. This set of operations will either completely succeed or fail in its entirety, in
the case of a catastrophic system failure.

In this article we will examine journaled files and how to use them with transactions.

JOURNALED FILES
Creating a journaled file is similar to creating an MKEYED file. Use the JKEYED verb
with the same syntax as the MKEYED verb. For example, you can use the following
statement to create a journaled file with two keys, with a descending sort on the
second key:

 JKEYED "MYFILE",[1:1:2],[2:1:10:"D"],0,128

This specifies the creation of a JKEYED file with two keys, the first being the first two
bytes of the first field in the record, while the second is the first 10 bytes of the
second field, in descending sequence. The record size is 128 bytes per record.

You can also define a "single keyed" JKEYED file, similarly to a DIRECT file as in:

 JKEYED "MYFILE",12,0,80

which defines a file with a single key of 12 bytes and a record size of 80 bytes. Note
that all JKEYED files are dynamic.The record count parameter is required for the
syntax, but ignored in creating the file.

Once a JKEYED file is defined, it must be opened with the JOPEN verb and erased with
the JERASE verb. The normal, BEGIN, END, STOP, START RELEASE, or CLOSE verbs
will close a JKEYED file. The JOPEN and JERASE verbs are required, since a journaled
file is not a single file, but a data file and log file pair. In addition, the JOPEN can
associate a journaled file with a transaction.

The normal READ, WRITE, and REMOVE verbs are used with journaled files in the
same way as with other keyed files. They are different in that when a journaled file is
updated i.e., with the REMOVE or WRITE verbs, the data file is updated, and in
addition, a record is written to the log file so that a complete history of updates is
maintained.

http://www.basis.com/advantage/mag-v6n1/skin.html
http://www.basis.com/advantage/mag-v6n1/index.html
http://www.basis.com/advantage/mag-v6n1/roadscholar.html
http://www.basis.com/index.html
http://www.basis.com/advantage/index.html
http://www.basis.com/advantage/mag-v6n1/index.html

TRANSACTIONS
A transaction is defined as a group of updates to one or more files that are tied
together so that all are completed, or none are. It is also called an "atomic" operation
because the entire transaction is treated as a unit. Normally, a transaction is either
explicitly committed or rolled back. There are cases where the commit or rollback is
automatic, as we shall see. Building on journaled files, BBj can manage transactions.

Transactions are set up using the TOPEN function. This function returns a numeric
value, or handle, that identifies the transaction. This handle is used to associate
journaled files with the transactions and to identify the transaction in a commit or
rollback operation.

The syntax for the TOPEN function is:

 handle=TOPEN(int{,ERR=stmt})

where handle is a numeric variable, and int takes on the values 1, 2, or 3, depending
on the level isolation that is required for the transaction. It determines how multiple
concurrent transactions interact. These values are explained below:

VALUE MEANING

1 This is the lowest level of isolation. It allows the operations in the
transaction to read data even though the data may have been written
out during a transaction that has not yet been committed or rolled
back. The risk is that the data read will be changed after the read,
because a rollback was executed. Hence the transaction could be
incorrect.

2 The transaction will not be able to read data involved in another
transaction until that update has been committed or rolled back. Here
you have a higher level of isolation than in number 1, but after you
read it, you are still open to another process-writing data that you have
read.

3 No data read in the transaction can be changed by any other
transaction until the transaction has been committed or rolled back.
This is the highest level of isolation. In addition to the isolation
provided in 1 and 2, this level prohibits any transaction from writing
data to records you have read until you commit or roll back the
transaction.

Isolation levels 1, 2, and 3, all require more resources than non-transaction-oriented
file update. At level 3 all the data used in a transaction is locked away from the use of
any other transaction until the current transaction is completed. If the transaction is
lengthy, it will tie up the data and resources and slow down overall system
performance. It is important in high volume systems to make the transaction as tight
as possible to minimize the performance impact.

Once a transaction handle has been obtained, the JOPEN verb is used to tie the
journaled files to the transaction. The syntax for the JOPEN verb is

 JOPEN(channel{,TID=int{,ERR=stmt))fileid

Where TID is the transaction ID obtained with the TOPEN function. If no TID is
specified, the journaled file is opened in "auto commit" mode. In this mode an implied
commit is executed after each update to the file. This is inherently slower, but it
allows existing code to use journaled files without adding explicit TCOMMIT and/or
TROLLBACK statements. Therefore, all updates to journaled files are transactions,
either implicitly, as in auto-commit mode, or explicitly, when the TID is specified to
bind the updates to a transaction. When journaled files are opened using a TID, they
are now part of a new entity, the transaction.

Transactions must be committed or they will be automatically rolled back when a
BEGIN, START, END, etc., are executed to close the journaled files. This guarantees
that only the transactions that go through all the updates steps specified in a program,
including the commit, are updated as a whole. It also guarantees that in the case of a
system problem, incomplete transactions are automatically rolled back.

Transactions maintain the logical integrity of related data files. The journaled files used
in a transaction cannot get out of synch, because the transaction operation groups the
individual operations into a higher level, atomic operation. Consider a sales invoice
update program. Each invoice generates updates to many files, such as Accounts
Receivable, Sales Analysis, Inventory, Order Processing, and General Ledger. Without
Transaction Tracking, the program could have updated only the A/R and S/A files. A
system problem at this point would leave the other files out of synch with A/R and
S/A. With Transaction Tracking, this cannot happen. The transaction would be rolled
back, and the individual files would be in synch.

Transactions can be very complex. It is important, for performance reasons, to ensure
that the definition of the "atoms" does not get too large. For example, you could set
up a transaction that updates sales invoices, and does not commit anything until the
entire set of invoices has been processed. This would be an enormous transaction and
would in all likelihood tie up a lot of the system while every other process waited for a
commit. Defining the transaction at the invoice level, where a commit is executed as
each individual invoice is processed, including all the updates to the various files, is
better. It preserves the integrity of the individual invoice updates, without unduly
limiting other processes on the system.

We will close with an example of a simple invoice update. The update is limited to
reading the invoice file and updating inventory and the A/R invoice file.

rem update invoices
rem read invoice file, and update inventory, and accounts receivable
rem treat updates as transactions

rem get transaction id

 InvoiceUpdateID=TOPEN(3)

rem open files for transaction, with maximum protection for concurrency

 InvoiceHdr=unt
 JOPEN(InvoiceHdr,TID=InvoiceUpdateID)"InvoiceHdr"

 InvoiceDet=unt
 JOPEN(InvoiceDet,TID=InvoiceUpdateID)"InvoiceDet"

 Inventory=unt
 JOPEN(Inventory,TID=InvoiceUpdateID)"Inventory"

 ARInvoice=unt
 JOPEN(ARInvoice,TID=InvoiceUpdateID)"ARInvoice"

rem data templates

dim InvoiceHdr$:"invoice_num:c(7),cust_num:c(7),invoice_date:n(9),
:order_num:c(7),invoice_total:n(8), discount_total:n(8)"

dim InvoiceDet$:"invoice_num:c(7),line_num:c(5),product_id:c(7),

:qty_ord:n(8),qty_ship:n(8),price:n(8)"

dim Inventory$:"product_id:c(7),description:c(30), gl_num_sales:c(7),
:gl_num_cost:c(7),uofm:c(4),price:n(8),cost:n(8),
:qty_on_hand:n(8),qty_committed:n(8),qty_sold_mtd:n(8),
:qty_sold_ytd:n(8)"

dim ARInvoice$:"cust_num:c(7),invoice_num:c(7),invoice_date:n(7),
:invoice_total:n(8),discount_total:n(8),amount_paid:n(8),date_paid:n(7)"

rem read invoice header

Next_Invoice:

 readrecord(InvoiceHdr,end=EOJ)InvoiceHdr$

rem read invoice detail and distribute

 readrecord(InvoiceDet,dom=*NEXT,key=InvoiceHdr.invoice_num$)

 readrecord(InvoiceDet,end=Next_Invoice)InvoiceDet$

 if InvoiceDet.invoice_num$<> InvoiceHdr.invoice_num$ then
: goto Next_Invoice

rem update inventory

 extractrecord(Inventory,key=InvoiceDet.product_id$)Inventory$

 Inventory.qty_on_hand=Inventory.qty_on_hand-InvoiceDet.qty_ship

 Inventory.qty_sold_mtd=Inventory.qty_sold_mtd+
: InvoiceDet.qty_ship

 writerecord(Inventory)Inventory$

rem A/R update - create a/r invoice

 ARInvoice.cust_num$=InvoiceHdr.cust_num$
 ARInvoice.invoice_num$=InvoiceHdr.invoice_num$
 ARInvoice.invoice_date=InvoiceHdr.invoice_date
 ARInvoice.invoice_total=InvoiceHdr.invoice_total
 ARInvoice.discount_total=InvoiceHdr.discount_total
 ARInvoice.amount_paid=0
 ARInvoice.date_paid=0

 writerecord(ARInvoice)ARInvoice$

rem commit the update

 tcommit(InvoiceUpdateID)

 goto Next_Invoice

rem end of job

EOJ:

rem close and clear invoice header and detail files

 close(InvoiceHdr)
 initfile "InvoiceHdr"

 close(InvoiceDet)
 initfile "InvoiceDet"

release

Note: Before creating your first journaled files, you must configure the Journaled File
System from the Enterprise Manager.

http://www.basis.com/advantage/mag-v6n1/skin.html
http://www.basis.com/advantage/mag-v6n1/index.html
http://www.basis.com/advantage/mag-v6n1/roadscholar.html
http://www.basis.com/onlinedocs/documentation/index.htm

	basis.com
	BASIS International, Ltd. - Implementing Journaled Files And Transaction Tracking In BBj 2.0

