

What's Brewing With Java
Java is the foundation of our next generation product, BBj®. Here, we track
and analyze the developments taking place in the world of Java. In this
issue, BASIS Software Engineer Jeff Ash explains some basics about Java
Database Connectivity.

More Data Access Choices: JDBC

By Jeff Ash

When information technology professionals are faced with a business requirement, it is
important that they have as many technology choices as possible. Prior to the release
of BBj data access components, developers and users had only two choices available
for accessing BBx data: BBx applications and Open Database Connectivity (ODBC).
BBj adds a third option for accessing data: JDBC (Java Database Connectivity).

What Is JDBC?
JDBC is a Java application programming interface (API) that provides a method of
accessing data that is both platform independent and database management system
(DMBS) independent. JDBC is similar in function to ODBC, a common interface used
with Microsoft Windows applications. Just as ODBC can be used to access data from a
Windows application, the JDBC API can be used to access data from a Java program
or from an off-the-shelf Java application, such as a Java-based report writer. If you're
using the JDBC API from your Java program, you'll find that its object-oriented
structure is easy to use. The API is also supported by a large number of Windows- and
Unix-based third-party products.

How JDBC Differs From ODBC
The first thing to understand about JDBC is that it is not a replacement for ODBC but
rather an additional technology for accessing data. JDBC is an API used through the
Java language, while ODBC is a native interface accessed through a language that can
make calls into a native library (for example, DLL). JDBC is a huge advantage because
it provides platform-independent access to any database that has a JDBC driver
available.

Another difference between JDBC and ODBC is that JDBC is object-oriented and does
not use pointers. This makes for a much cleaner interface that is easier to use. In this
way, JDBC closely resembles some of the ODBC-wrapper APIs, such as ADO and DAO.

JDBC Programming
Developing applications using JDBC is much simpler than using ODBC directly or other
database APIs. JDBC consists of a package of Java classes and interfaces that

http://www.basis.com/advantage/mag-v5n1/trz.html
http://www.basis.com/advantage/mag-v5n1/index.html
http://www.basis.com/advantage/mag-v5n1/roadscholar.html
http://www.basis.com/index.html
http://www.basis.com/advantage/index.html
http://www.basis.com/advantage/mag-v5n1/index.html

encapsulate the various aspects of data access. The following is a brief description of
the basic classes used in a JDBC application:

Driver – Each DBMS must have a JDBC driver specific to that system for the
DMBS to be accessed by a JDBC application. The driver class is responsible for
creating a connection to a particular database.

Connection – A connection object represents a single JDBC connection to a
database.

Statement – Statement objects represent a single SQL statement. Statement
objects can be queries, updates or data-definition language statements.

ResultSet – ResultSet objects represent the results of an SQL query.

Meta Data – The various meta data classes provide methods for retrieving certain
information about databases or result sets. The DatabaseMetaData class gives
the user the ability to get information about the database itself, such as available
tables, indexes, version, etc. The ResultSetMetaData class provides methods for
retrieving information about ResultSet objects, such as columns returned in a
query, data types of query columns, etc.

The following sample code shows the simplicity and object-oriented nature of the
JDBC API. This code makes a connection to the local BBj Data Server's Chile Company
database, executes a statement and prints the contents of the ResultSet to standard
out:
import java.sql.*;

public class JavaSample
{
 public void main(String[] p_args)
 {
 // Setup the connection string (URL)
 String url = "jdbc:basis:localhost?DATABASE=ChileCompany";

 // Load the BASIS JDBC Driver into the process so we can use it
 Class.forName("com.basis.jdbc.BasisDriver");

 // Make a connection to the Chile Company database
 Connection con =
 DriverManager.getConnection(url, "theuser", "thepwd");

 // Create a statement and execute it.
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT item_num FROM item");

 // Show the results
 while (rs.next())
 {
 System.out.println(rs.getString("ITEM_NUM"));
 }

 rs.close();
 stmt.close();
 con.close();
 }
}

The powerful JDBC API creates another avenue by which BBj data can be accessed by
third-party products, such as report writers, application servers and Web-based
applications. Use of the BBj Data Server and its platform-independent JDBC driver
open up a whole new world of technologies to the Business Basic community.

Additional Information
Check out Sun Microsystems' JavaSoft Web site at

You'll find a complete description of the JDBC API, documentation and easy-to-follow
tutorials.

	basis.com
	BASIS International, Ltd. - What's Brewing With Java?

