HAPIGNIEVEIOPIMENT

The GUI Enhancements of BBj
By Kshanti Greene

on how to improve the syntax and functionality of window and control

management. Most important was making the syntax clearer and simpler. We
wanted to offer an alternative to SENDMSG() and CTRL functions, which are difficult to
program with because of their parameter length limitation and their reliance on a
number to indicate the function. If you have programmed GUI in BBX® you probably
know how hard it is to remember the number for a function - unless you have a
photographic memory!

m hen designing the BBj® SYSGUI, we had a few goals in mind and a few ideas

Another goal was to improve the event-loop format. The event-loop paradigm used to
be the standard in many languages that are used to write GUI programs. Today,
however, more and more languages are using a messaging style in which components
register to be alerted of events. When the event occurs, methods within the
component will get called automatically.

Our third goal was to add a tree control to BBj as it is available in other modern GUI
programming languages.

And finally, the grid control needed an overhaul. In Visual PRO/5®, the grid is a
powerful control but requires extensive coding to maintain. In BBj, we wanted to
automate much of the grid behavior and allow it to manage itself once it has been set

up.
OUR SUCCESSES

We have succeeded in all these goals for the BBj SYSGUI. First of all, we have
introduced the BBjObject syntax. We modeled this syntax after common Object-
Oriented programming languages and used the "dot-notation" that is so intrinsic in
languages like Java and C++. Currently BBjObject syntax is not available for all
functions for all controls, but these will be included soon. We've improved event
handling with the introduction of CALLBACKs and, yes, we also have an easy-to-use
tree control.

As for the Grid control, we have made many improvements. The grid can now manage
its own data, editing and other functions that used to be managed by the BBx
program. Once the BBj programmer creates and sets up a grid, he can leave it alone.
We have also added new SENDMSG()s to simplify grid setup and over 100 BBjGrid
methods that duplicate the behavior of the grid SENDMSG()s as well as add
functionality. We have also added BBjObject methods for almost all GUI controls.

CALLBACKSs

The benefits of CALLBACKs are numerous. First of all, they follow the event-handling
paradigm used in modern GUI programming languages such as Java and C++ for
Microsoft Windows. Instead of handling an event loop, and checking each event type
and control ID that comes out of the loop, you can now register a CALLBACK for a
control, and a specified subroutine will automatically execute when the event occurs
on that control. The programmer need only manage the events for controls that he
wants to handle.

http://www.basis.com/advantage/mag-v5n2/manage.html
http://www.basis.com/advantage/mag-v5n2/index.html
http://www.basis.com/advantage/mag-v5n2/one.html
http://www.basis.com/index.html
http://www.basis.com/advantage/index.html
http://www.basis.com/advantage/mag-v5n2/index.html

The following demonstrates the code required to run a Read Record-mode event loop:
REPEAT
READ RECORD

o (SYSCUL, SIZ=EVENT , ERR=LOOP_END)EVENTS$

Handle Event
UNTIL EOJ

In CALLBACK mode, the loop is handled internally, so the only line needed is:
PROCESS_EVENTS

The following demonstrates the steps required to retrieve the code and control ID
from the Read Record string.

ID = event.ID

code$=event.code$

IT code$ = qfodCode$ and ID = goodID then
Ei REM Handle event

i

When a BBx programmer uses Read Record mode, he has to check the type and ID
for every event in order to catch those events in which he is interested. The
programmer will ignore events in which he has no interest. This creates wasted
program execution.

In CALLBACK mode, the CALLBACK specifies the ID and event type:
CALLBACK(EVENT_TYPE, HANDLER, CONTEXT, ID)

The program executes efficiently because it only handles events that the programmer
intended to handle.

Creating a CALLBACK involves three main steps:

1. Register the CALLBACK with an event type, a subroutine to call, and a
context and control ID. The following CALLBACK manages the close event
on a window with context CONTEXT:

CALLBACK(ON_CLOSE, EXIT_PROGRAM, CONTEXT)

A CALLBACK for a control also needs a control ID:
CALLBACK(ON_BUTTON_PUSH, BUTTON_PUSHED, CONTEXT, BUTTON_ID)

2. Add PROCESS_EVENTS in the correct place in the program. You should
place it before the subroutines that may be called in response to the
events. This is the verb that runs an internal event loop in the BBj
Interpreter:

PROCESS_EVENTS
3. Create subroutines that the Interpreter will call for each CALLBACK.
More than one CALLBACK can call the same subroutine.

EX1T_PROGRAM:
REM Clean Up
RELEASE
RETURN

Additionally, more information can be retrieved about the event using:
EVENT$=SysGui ! .getLastEventString()

This call returns the same string that READ RECORD retrieves in READ
RECORD-style event handling. You can also use the NOTICE() function.

An equivalent CALLBACK event type exists for each SYSGUI regular and Notify event.
For example:

e Event code "B" = ON_BUTTON_PUSH
e Event code "e" = ON_EDIT_MODIFY
¢ Grid Notify event 22 = ON_GRID_UPDATE

TREE CONTROL

The BBj programmer can create and manage the tree control using BBjTree methods.
SENDMSG()s will not work on it, although some common control mnemonics and
CTRL() functions, such as 'SIZE' and CTRL(0), will work on it. Both CALLBACKs and
Notify events are available to handle tree events. The following example demonstrates
how to create and set up a tree control:

Use a BBjWindow object to create a tree. Set a root before any other nodes are added
to the tree. The root is the top-level node in the tree. You must assign each node an
ID:

myTree! = myWindow!.addTree(id, left, top, width, height)
myTree! .setNode(O,""Root™)

Once you have set a root, you can add nodes to parent nodes. You have to add the
first node to the root node. Add nodes to a parent node by specifying first the child 1D
and then the parent ID:

REM *The following code will create the

REM “tree displayed in Figure 1

REM "Add the TirSt level of nodes to Root node

myTree! _addNode(1,0,"Subtreel™

myTree! _addNode(2,0,"'Subtree2™

myTree! _addNode(3,0,"'Subtree3"

REM "Add second level of nodes to tree

myTree! _addNode(4,1," " Leafl™

myTree! .addNode(5,1, " Leaf2"
myTree! _addNode(6,2," " Leaf3"

Figure 1. This figure Qur online BBj documentation has more information on tree
demonstrates a tree controlfeatures and functionality. You can read more at:
ge”erat‘fr‘]jegﬁgé% BBITree wwww.basis.com/onlinedocs/documentation/index.htm

_J Root GRID ENHANCEMENTS
(= _§ Subtree1
® Leafi Grid enhancements cover several areas including setup and
® Leaf? maintenance, automation, BBjGrid methods and data-aware grid

improvements.
* | Subtree2 P

@ Subtree3 Setup and Maintenance
We have made several important improvements to the BBj grid
control that allow a BBj programmer to set up a grid and then leave it alone, unless
he desires special handling.

The most important new feature is data caching. In Visual PRO/5, the grid does not
cache data. Therefore the programmer has to watch for table update events and fill
the cells with data when the events occur. Once a cell goes off the screen, the grid
will "forget” about the data in the cell. In BBj, this is no longer the case. Once a cell
has data, the data will remain in the cell until it is changed, either programmatically or
by the user. This means that the program no longer needs to watch for the table
update event. The programmer can also fill the grid before it is even set visible.

In case a programmer still wants to use the table update event to manage data, which
may be useful for grids with a large amount of data, we have added a SENDMSG() to

http://www.basis.com/onlinedocs/documentation/index.htm

make data loading more efficient. If the programmer sets SENDMSG(110); Set Update
Cached Cells to FALSE, then BBj will only fire table update events for cells that have
no data in them. Once the program has put data into a row, then BBj will not fire
events requesting a data update for that row. This can greatly improve performance
for a large grid that requires scrolling.

The BBj programmer can also handle grid appearance during grid setup, instead of
using the Draw Cell SENDMSG() in response to the table update event. We added
several SENDMSG()s to allow the programmer to set attributes by column. In most
grids, specific properties such as style, color and alignment will be common for all cells
within a column. The following SENDMSG()s allow the programmer to set these
attributes initially per column, so that he does not need to set them for each individual
cell:

SENDMSG(102): Sets default background color for a column
SENDMSG(103): Sets default text color for _a column
SENDMSG(104): Sets default style for a column
SENDMSG(105) : Sets default alignment for a column

Again, the benefit of data caching and column-attribute setup is that a programmer
can set up a grid during program initialization, and he does not need to handle the
table update event in order to set data and attributes in cells. This will also appear to
improve performance of the grid because the BBj program can set up the grid while it
is not visible.

Automation
BBj automates several functions that need to be managed by the program in Visual
PRO/5. These functions include:

e Cell Editing
e Checkbox- and button-style cell handling
e Drag and drop

In Visual PRO/5, the program must call the Start Edit SENDMSG() in response to a
user clicking on a cell. This is no longer required. By default, cell editing will begin on
a cell when the user double-clicks on an editable cell. If the user changes the text in
the cell, then the text will remain as changed when focus on the cell is lost. The grid is
editable by default but can be set non-editable by grid, column or cell using
SENDMSG()s 106-108. SENDMSG(111) can be used to set the number of clicks to
begin editing.

In Visual PRO/5, programs also have to manage the toggling of cells that are checkbox
or button style. When a user clicks on a cell, the program must respond to the event
and set the style in the cell in order to toggle the state of the check or button. This is
not necessary in BBj. By default, a cell that is checkbox or button style will be toggled
when the user single-clicks on the cell. A BBj programmer can turn off the automatic
toggling by setting the cells to be non-editable.

Drag and drop handling in the grid is also easier. Now in BBj, if you enable drag-and-
drop on a grid using SENDMSG(33), then when a user clicks on a cell and drags and
releases the mouse over another cell, BBj copies the contents of the initial cell into the
second cell. A user can drag-and-drop between any grids within the same BBj process.

These automated features are available by default in BBj. However, the editing and
toggling features are sometimes not compatible with Visual PRO/5 behavior. In order
to make the BBj grid backward-compatible, we have added a SETOPTS bit. The grid
backward-compatibility bit is SETOPTS bit 8(10), and it will turn off automated cell
editing and toggling of checkbox- and button-style cells. The grid will behave as in
Visual PRO/5. After careful consideration, we decided to make the automated behavior

the default in the grid, instead of having to make new programs set a SETOPTS bit to
turn on the BBj behavior.

BBjGrid Methods

BBj has introduced Object syntax to simplify and clarify function syntax and to make it
easier to add new functionality. Object syntax has many benefits. First of all, it has no
parameter length limit. A BBjObject method can have as many parameters as is
needed. This means that we do not have to use templated strings in order to pack a
lot of information into one function. Parameter and return types are also based on
what is needed for the method. Any data type or object can be used as a parameter
or return value. SENDMSG() and CTRL() functions require specific types and always
return a string.

We have also designed the methods to simplify behavior. In other words, one method
has one functionality, instead of cramming a lot of side effects into one SENDMSG().
For example, a program can easily set one attribute in the grid without setting up a
Draw Cell SENDMSG() string that is designed to set several attributes at once. The
method names describe their functionality, so they are easier to remember than the
numbers Visual PRO/5 uses to distinguish SENDMSG() and CTRL() functions. Each grid
SENDMSG() has an equivalent BBjGrid method or methods, and we have added
functionality as well.

Figure 2. Here is a screen from the TechCon2001 weather
demonstration program. The demo uses BBjGrid methods and
enhanced grid behavior as well as embedded Java objects. You can
find this demo program on this issue's CD in \Program Files\basis\

demos\techcon.
ﬁﬂﬁlwnﬂﬂwr = —= .‘Lmﬂ
Weather Forecast cick onrow to gl wealher tor your c2y.
Company City | State/Country |
(5 7ok oo 575 s Fiods a
Ahgok.be Systems Herwark Deslarvwar j
Acou-mad Lk Fowmet ICakicarin
Adbeuncad Concepts [Wdstonn
Amacelon Gustemain s Emaln
Astoried Business Sohdions Dy Cakitoerin
AoV BY. Brirsgarisactt Metrariarcts
Banic Syshems A5 Tronsgund Swentden

BASIE Gmbh Weshaden Germany
|Beton

=
Albuguergue, NM
Fricay, June 1, o1 1218 FM Mountain Dedight Tame (Fridey 1-38 PM EOT} [¥ Grid Edtatie
Tewmp (F) | Dew Poind | Mty | Wi | Precipistion |
SPM] | a | Froe tres Wl Mormeecst o 16 | o
EPM] 9| Fromine West Normwes & 18 | Ce
TP -] 10 Fromm the Wt Mordevest o 14 [10
P n 10 | Fromhe Norttremet ot 11 | ™ 10
|_arm = 10 | FrommeHorhNowestatd | [10
0| n | From i North o 7 | w0
11 PW ¢ : Fil 11 [Froes: the Morth Morthaast of 7 [10
128 |] 12 | Fromihe Nodheast ol 6 o

3" 80" TO" BE°

Data-Aware Grid

We have made a few enhancements to the data-aware grid as well. First of all,
SENDMSG(100); Synch Grid Data will synchronize the grid with the current view of the
data. The BBj programmer no longer needs to disconnect and reconnect the data
channel to the grid in order to get updated data. Another additional feature is the
option to display a confirm message box for the user to confirm if he wants an update
to continue. SENDMSG(112) will set this option. Lastly, the programmer does not need

to use the Start Edit SENDMSG() to begin editing on a data-aware grid. Editing will
begin when a user double clicks on an editable row.

BBjObject Methods

We've added BBjObject methods for all controls except image lists. A BBj programmer
can access each control using the BBjControl methods, which include general methods
to set and retrieve size, location, borders and text. Each control also has individual
methods to duplicate and enhance the functionality of the mnemonics, CTRL() and
SENDMSG() functions. The BBjTabCtrl methods offer a vast improvement over the
TABDESCS$ string, which required you to set all tab information at once. Now you can
add and retrieve individual tab attributes, and even BBjControls, from the tab control.
The following methods allow the programmer to use the control object within the tab
control, instead of referring to a control ID.

addTab(String title, BBjControl)
BBjControl getControIAt{lnt index)

THE FUTURE OF BBj GUI

We've introduced many improvements to GUI programming in Business BASIC with the
release of BBj 1.0. However, we will not stop here. We have many ideas and plans for
even more improvements. Some of these future enhancements include:

= AppBuilder: Build resources with full access to all available control methods and
add automatic code generation

= More improvements to CALLBACKS, including making additional event
information available without using getLastEventString()

= Add Listbutton and other control cell styles to the grid

= More data-aware controls and more powerful data-aware grids

And of course, we are always open to suggestions for improvements... " 5

http://www.basis.com/advantage/mag-v5n2/manage.html
http://www.basis.com/advantage/mag-v5n2/index.html
http://www.basis.com/advantage/mag-v5n2/one.html

	basis.com
	BASIS International, Ltd. - The GUI Enhancements of BBj

