
 

Large File Performance 

By Dale Fredrick

With the introduction of 64-bit MKEYED files in Revision 3.0 of PRO/5�
and Visual PRO/5�, the ability to generate extremely large data files is now a reality. Along
with the ability to generate very large MKEYED files come questions about severe
degradation in file operation performance as records are added to the file. We did not believe
that there was a point at which users of large MKEYED files would "hit the wall" and suffer
an extreme loss of performance, but we didn't have any testing or data to back it up. Based
on some original testing done by the BASIS Quality Assurance (QA) group, we set out to
gather some real data on large MKEYED file performance. The simple benchmark and the
results of that work are presented in this article.

The Benchmark 
The initial composition of the benchmark can be attributed to a test written originally by the
BASIS QA group. The original intent, which has been maintained, was to generate a 64-bit
MKEYED file in batch mode. The file would be grown in roughly 500-MB chunks and would
consist of nine 30-byte keys, with a total record length of 998 bytes. By experience, the test
would use one of the more time-consuming operations that occurs with an MKEYED file, that
of inserting a new record into a file. The BBX� program would be run 14 times and insert
305,000 records in each batch run.

The records are inserted in random order. The first run would insert records containing keys
from 1 to 305,000; the second run would insert records containing keys from 305,001 to
610,000, etc. Each of the nine keys for a given record has a different random value.

I took over the test when the QA group was getting results that were all over the map and
rather confusing. My original goal was to determine why the QA tests had large fluctuations
in the results from one execution of the benchmark to another. We did not believe that the
MKEYED driver or PRO/5 was at fault. In the end, we found that our laboratory
configuration, which relies on NIS to provide password information and other UNIX database
functionality, was partially at fault. We reconfigured for a local user, avoiding both the use of
NIS and NFS during the tests, disallowing the use of the machine by all other users and
implementing a local license manager. After this reconfiguration, multiple executions of the
benchmark were generating consistent results from one execution to another.

Host Configuration 
The benchmark has been repeatedly executed on three separate hosts in the BASIS
Engineering/QA laboratory:

Host Type Operating
System

Host
Memory Disk Where Test File Resides

HP Model HP-UX 10.20 32 MB Seagate ST19171N (9 GB)

http://www.basis.com/index.html
http://www.basis.com/advantage/index.html
http://www.basis.com/advantage/mag-v4n1/index.html
http://www.basis.com/advantage/mag-v4n1/help_citicorp.html
http://www.basis.com/advantage/mag-v4n1/index.html
http://www.basis.com/advantage/mag-v4n1/summit.html


712/60
Motorola
MT604-
100

AIX 4.3.2.0 64 MB Seagate ST19171N (9 GB)

IBM
RS/6000
43P Model
260

AIX 4.3.2.0 512 MB SSA Multi-Initiator/RAID EL adapter with SSA fast-write
cache option. Three striped UltraStar 9LP (9 GB) disk
drives in a SSA multi-storage tower.

Each of the hosts has been configured with a minimum of three local file systems. The file
systems are built in a configuration in which each utilizes a separate disk drive or disk drives:

root
which contains the operating system, /usr and other standard UNIX operating system
directory structures. Under AIX, /usr, /var and other operating system-related
structures are different file systems than that of root. In our configuration, however,
they reside on the same physical disk drive.

local Home
The PRO/5 3.0 executable, the BBX program and any called programs, shell scripts
and the resulting log files reside on this file system.

test area
contained the file being tested.

The file system and directory structure layout is done in this manner so that I/O traffic to the
test file, which resides on the test area file system, can utilize separate I/O adapters and/or
controllers. This layout also allows the data to/from the file under test to be the only active
file on a disk or striped disk set. An additional benefit of this configuration is that statistics
about I/O activity at various levels of the operating system and the physical disk drive can
also be restricted to the disk containing the file under test.

The bourne shell script, which drove the test, was submitted to the system for execution by
use of the at(1) command. On the IBM RS/6000 43P Model 260, the root and home disks
were on separate interface buses and adapters than that of the 9-GB striped disks.

The Results 
The results of the test for each of the three nodes is shown in Figures 1, 2 and 3. The graphs
are plotted with time on the Y axis and the benchmark run number on the X axis. The UNIX
time(1) command was used to execute each run of PRO/5 and to provide the timing results
from the operating systems process resource usage statistics. After each run of PRO/5
finished executing, the time command reported (in seconds):

real = the total real time elapsed
user = the time used to execute the PRO/5 process in user mode
system = the time consumed by system overhead in the process
u+s = the sum of the user and system times

HP Model 712/60

Figure 1. Performance Results for PRO/5 3.0 on HP
Hardware.



IBM RS/6000 43P Model 260

Figure 2. Performance Results for PRO/5 3.0 on IBM
Hardware.

Motorola MT604-100

Figure 3. Performance Results for PRO/5 3.0 on Motorola
Hardware.

After the first two runs, the file had grown to approximately 1 gigabyte in size and contained
610,000 records. The time taken for the addition of records to the file by the following batch
insertion runs stays reasonably consistent from Run 3 to Run 14. After Run 14 is completed,
the file has achieved a total size of approximately 7.2 gigabytes and contains 4,270,000
records.

As can be seen from the graphs, once the file with the defined configuration has reached a
size of approximately 1 gigabyte, the time it takes to add additional records to the file
continues to increase slightly in the user and system times. This is to be expected. However,
it does not increase suddenly or even dramatically with the following 12 runs on any of the
hosts where the test was run.



You may have noticed that the real time values in all the graphs increase and decrease
variably from run to run. PRO/5 does not do synchronous writes to the actual disk but uses
the standard UNIX read and write calls to read and write the file header, key nodes and
records to the file. Under modern UNIX operating systems, files are buffered in some sort of
disk cache. A few versions of UNIX still use the older buffer cache and have some kind of
sync daemon to flush modified blocks back to disk.

Operating systems like AIX today still have a disk I/O cache, but it has been merged with the
Virtual Memory Management subsystem. Under AIX, normal access through the Journaled
File System (JFS) is managed by the Virtual Memory Manager (VMM) and does not use the
traditional method for caching the data blocks. As blocks of a file are requested by a read
operation, if they are not already present in the VMM disk cache, a page fault occurs and
they are paged in from disk. When blocks are modified by a write operation, the blocks in the
VMM disk cache are changed. The movement of that data from the VMM disk cache to the
physical disk takes place outside of the actual process by a delayed write mechanism within
the VMM. PRO/5's use of the UNIX write system call utilizes writes that are asynchronous.
The end result in our test shows that FIFO I/O queues of several megabytes build up and
consume considerable time by the VMM while being moved to disk, causing the fluctuations
in the real time from run to run.

Conclusion 
The tests clearly show that the performance of the MKEYED file driver in the PRO/5 file
system scales extremely well into multiple gigabyte file sizes. We realize that we have just
begun to scratch the surface when it comes to file performance testing. We will continue a
program of file performance testing both with PRO/5 and BBjTM as part of our efforts to
provide our customers with a modern high-performance, high-reliability file system.

References 
For more information about performance and tuning for two of the platforms we tested, I
recommend the following books. They further define I/O workload measurement and tuning.

Sauers, Peter S. and Weygant, Robert F., HP-UX Tuning and Performance: Concepts,
Tools, and Methods, First Edition, Prentice Hall, July 9,1999.

Waters, Frank, AIX Performance Tuning Guide, First Edition, Prentice Hall, September 28,
1995.

 

 

http://www.basis.com/advantage/mag-v4n1/help_citicorp.html
http://www.basis.com/advantage/mag-v4n1/index.html
http://www.basis.com/advantage/mag-v4n1/summit.html
http://www.basis.com/advantage/subs.html
http://www.basis.com/advantage/mag-v4n1/copyright.html
http://www.basis.com/advantage/mag-v4n1/copyright.html

	basis.com
	BASIS International, Ltd. - Large File Performance


