
What's Brewing With Java
Java is the foundation of our next generation product,
BBj™. Here, we track and analyze the developments
taking place in the world of Java. In this issue, BASIS
Vice President of Engineering, Kevin King, explains our
decision to implement BBj on the Java Runtime
Environment 1.3.

Why Wait for JRE 1.3? Hotspot!
BBj will require the version 1.3 of the Java Runtime
Environment (JRE). A number of our Customers have asked why we've built BBj for JRE 1.3
rather than the currently available JRE 1.2.

There are several compelling reasons for requiring JRE 1.3.

JRE 1.3 provides several enhancements to the GUI capabilities of the Java language
that are needed to make some of our visual controls, specifically the list box and the
grid, function correctly
JRE 1.3 provides an enhanced mechanism for system calls that is needed for the
SCALL verb to execute correctly
JRE 1.3 provides significant speed improvements over JRE 1.2

Most of these 1.3 enhancements will not be noticeable to a BBj user. The one enhancement
that will be significantly noticeable will be the speed improvement. The JRE 1.3 includes the
Hotspot Just In Time (JIT) compiler, which is both a JIT compiler and a run-time code
optimizer. It is through Hotspot technology that Java is approaching the execution speeds of
C/C++.

Hotspot = Speed

To understand the effect of Hotspot, consider the following BBj program:

 X = TIM
 FOR I = 1 to 1000
 Z = ATN(3)
 NEXT I
 Y = TIM
 PRINT 3600 * (Y - X)

http://www.basis.com/index.html
http://www.basis.com/advantage/index.html
http://www.basis.com/advantage/mag-v4n3/index.html
http://www.basis.com/advantage/mag-v4n3/roadscholar.html
http://www.basis.com/advantage/mag-v4n3/index.html
http://www.basis.com/advantage/mag-v4n3/trz.html

If you load this program and run it several times, you will observe something interesting. The
second time the program is run, the execution time will be about half of the first execution
time. The third time it is run, it will execute in about a third of the original time. After the third
run, there may be some improvement, but the times will settle to about one fourth of the
original execution time. Why does this simple program have such a variation in execution
time? The explanation is that Hotspot is optimizing the underlying BBj code as it is running.

When a program is written in C/C++ and compiled with a C/C++ compiler, the result is a file
containing machine code for a particular machine. When a program is written in Java and
compiled with a Java compiler, the result is a file containing Java byte code. This byte code
is a set of instructions that can be understood by the Java Virtual Machine (JVM) but not by
the target machine itself. (Ed. Note: For a discussion of the JVM, see What's Brewing With
Java, Quarter 2, 2000, Advantage.) The JVM must act as an interpreter that processes each
byte code instruction by executing corresponding machine code.

Early versions of the JVM run Java programs slower than equivalent C/C++ programs. There
are two reasons for the speed differential. The first reason is that each instruction expressed
in byte code must be translated to machine instructions for the target machine and then the
machine instructions executed. Often the translation takes as much time as the execution
itself. The second reason is that modern C/C++ compilers analyze and optimize the source
code during compilation. The technology of Java compilers is obviously not as mature as that
of C/C++ compilers, and Java compilers do little, if any, optimization during the compile
process. The Hotspot JIT compiler addresses these performance problems by doing JIT
compilation and run-time optimization.

JIT Compilation

When Hotspot recognizes that a section of code is being executed repeatedly, it will cache
the machine code that results from that entire code section. The next time Hotspot
encounters the code section, Hotspot will use the cached machine code rather than re-
translating the individual byte code instruction. Although Hotspot may not cache all the code
being executed within a given application, it will cache the code that is most often executed.

Run-Time Optimization

When Hotspot recognizes that a particular set of cached machine code is being executed
numerous times, it will analyze that code and attempt to generate an optimized code section
to replace the original. In theory, the information that Hotspot gathers before doing this
optimization allows Hotspot to do a more appropriate optimization than can be done by the
static optimizer of the C/C++ compiler.

Our simple program is a very real example of the power of
Hotspot. In testing BBj with JRE 1.3, the tremendous
performance increases we observed made the decision clear.
We want to give you that power in BBj right out of the box. We
feel it was worth the wait to build BBj on JRE 1.3.

 For more information on speed comparisons between Java
 and C/C++, JIT compilers, run-time optimization and
 Hotspot technology, visit these Web sites.

http://java.sun.com/products/hotspot/whitepaper.html
http://www.sun.com/research/kanban
http://www.research.ibm.com/journal/sj39-1.html
http://www.aceshardware.com/Spades/read.php?article_id=153
http://www.basis.com/advantage/mag-v4n3/roadscholar.html
http://www.basis.com/advantage/mag-v4n3/index.html
http://www.basis.com/advantage/mag-v4n3/trz.html
http://www.basis.com/advantage/subs.html
http://www.basis.com/company/copyright.html
http://www.basis.com/company/termsofuse.html
http://www.basis.com/company/contact.html
mailto:info@basis.com

	basis.com
	BASIS International, Ltd. - BASIS International, Ltd. - What's Brewing With Java

