Flexible File Management 3 "
by Dale Frederick ]

File access in BASIS' new product generation, BBj™, will be structured differently than it
has been in the past. All access from within BBj programs will still operate on a channel. But
within BBj, the internal implementation will be a dramatic departure from what has existed in
previous generations of the BBx®language. In this TechCon99 session, I'll be explaining
and showing you these differences.

Channels that operate on devices will be implemented locally within BBj, as will access to
STRING files. But on-disk structured files, such as the MKEYED file type, will be
implemented and accessed through a new BASIS Database Server™. The new database
server fully supports all of the existing BASIS structured on-disk file types and access
methods without any changes to existing BBx code.

Enhancing Performance

The BASIS Database Server will be fully implemented in the Java™ programming language
and operate as a stand-alone and self-contained server that executes within a single Java
Virtual Machine (JVM) instance. The database server consists of several independent but
cooperative subsystems. Each subsystem is designed to handle a specific task related to the
manipulation and/or management of structured on-disk files. Some of the subsystems
resemble the functionality found in many modern multitasking operating systems and rely on
Java's threading support as provided by the Java programming language, class libraries

and the JVM for multithreaded operation. Many of these subsystems will live as daemon
threads exclusively within the server.

One of the goals of the new design and implementation of the structured on-disk files is to
improve the performance of file operations. Many of the performance bottlenecks that occur
with PRO/5® are caused by the extensive use PRO/5 makes of operating system services.
PRO/5, to aid in the arbitration of shared access to files, makes many system calls to the
operating system to perform operations such as:

» File locking: Segment locking is the mechanism used by PRO/5 to arbitrate access to
file headers, key chains and records. To communicate these actions to other users of a
file, operating-system locking calls are used. The operating systems themselves
maintain an internal lock database, relieving PRO/5 from having to manage lock data
and from having to do deadlock detection.

o Setting and clearing signals and timers for I/O operations: Many I/O operations are
timed automatically by PRO/5. The OPEN verb, for instance, utilizes system timers to
interrupt an operation that may be blocked because a resource is locked or
unavailable. The programmer may also utilize a timer (the TIM= option available on
some verbs) for some operations.

o Reading and writing various structures within a file: there is obviously no way to get
around the absolute need to physically read and write the contents of a file.

The various operations that modify a file must occur in an orderly and controlled fashion to
preserve the integrity and structure of the file. Modern operating systems such as UNIX and


http://www.basis.com/index.html
http://www.basis.com/advantage/index.html
http://www.basis.com/advantage/mag-v3n3/index.html
http://www.basis.com/advantage/mag-v3n3/pro5enhancements.html
http://www.basis.com/advantage/mag-v3n3/index.html
http://www.basis.com/advantage/mag-v3n3/enlighten.html

Microsoft Windows (NT, 95, 98) present an environment where multiple users can read and
modify a file in an unpredictable and random manner, when viewed against the activity of
other users of the file.

As a general rule, however, the system calls used in the operations are both time consuming
and, in some cases, expensive. By internalizing into a single server much of the activity for
which PRO/5 relies on an operating system, the number of system-calls can be dramatically
reduced. That is one of the design goals of the BASIS Database Server: to reduce the
system call overhead associated with the management of BBx structured files. Other
advancements and data management techniques will be employed to manage files, some of
these techniques are discussed here. I'll elaborate more on these and others in the

session.

BBj File Services

In BB;j, all of the BBx verbs, such as OPEN, READ, WRITE, will map to service requests and
messages between BBj and the database server. Although this sounds a lot like the product
known today as the PRO/5 Data Server®, it is dramatically different. Whether one user or
1,000 users have a file open, only a single database server will be executing. Additionally,
only a single instance of the physical file will be opened and maintained by the server. Many
of the operations that are handled though system calls will be reduced or eliminated by
utilizing new techniques in a multithreaded environment for the open files, regardless of the
number of external users that have the file open.

With multithreading, multiple user requests could be simultaneously searching the same key
chain of a MKEYED file. This of course assumes that the executing JVM actually has the
ability to execute multiple threads simultaneously on a multiprocessor machine. To do this
with PRO/5 today between two or more users could require extensive process-context
switching by the operating system.

SQL Services

Allowing the SQL engine to run as another service of the database server, much like the BB;j
file services, will allow the SQL engine to provide SQL services while providing the same
level of access and sharing of resources. Both a JDBC™ driver and a new BASIS ODBC
Driver® will have the ability to fully utilize the remote execution of SQL services.

Locking

The tracking of locks will be done internally to the server. In many cases, the locks that are
utilized in PRO/5 are used to synchronize activities between users of a file. By utilizing
advanced internal synchronization techniques within the server, a large amount of locking
overhead will be totally eliminated. For locks that actually implement the locking of records
(EXTRACT), an internal lock database will be utilized.

Caching

| mentioned previously that there is no way to get around the need to physically read and
write the file. That doesn't change much with the incorporation of file operations into a
server. However, having a single place for all users to request file services will allow for a
global cache of various segments from the file. This will allow for increased speed in the
reading of a file and in the searching of various keys structures when both reading and
writing a file. As the server develops over time, tunable parameters will be added that should
allow the sizing of caches by file and possibly by key.

Additional Services



The ability for Java programmers to access BBx files directly will also be provided by a
package of classes that BASIS will provide. Additionally, a C-interface library is planned that
will allow C programmers complete access to the BBj file services.

Dale Frederick brings more than 15 years of software development experience to
BASIS as a Senior Software Engineer. Before joining BASIS in 1995, Dale was with
Digital Equipment Corporation. He has extensive knowledge of UNIX, VAX/VMS, and
clustering internals, as well as TCP/IP and DECnet networking. Dale is the technical
lead for file system development in BASIS products.


http://www.basis.com/advantage/mag-v3n3/pro5enhancements.html
http://www.basis.com/advantage/mag-v3n3/index.html
http://www.basis.com/advantage/mag-v3n3/enlighten.html
http://www.basis.com/advantage/subs.html
http://www.basis.com/company/legal/copyright.html
http://www.basis.com/company/legal/copyright.html

	basis.com
	BASIS International, Ltd. - Flexible File Management


