

Selecting a cell to edit.

Get Rid Of File Maintenance Gridlock
With Grid Control--Part II

By Kurt Williams

Editor's Note: The following is the second in a two-part series on Visual PRO/5®'s grid
control feature. Data presented in this article is based on the grid sample code currently
included with Visual PRO/5. The complete Datagrid coding sample can be downloaded from
BASIS' Visual PRO/5 2.0 Coding Samples web page at
www.basis.com/visualpro5/samples.html.

Part one of this tutorial is also available online.

Developing and maintaining file maintenance utilities can be one of the least enjoyable and
most time-intensive aspects of Business Basic development. But with the release of Visual
PRO/5 2.0, developers have gained the grid control, a powerful new interface tool that can
generate a spreadsheet-like display of file data that is easy to move through and easy to
read. In addition, a data-aware capability included within the new grid control can help
developers keep on top of large amounts of information by handling all the back-end
manipulation and formatting of the data in the grid.

In the first part of this series, found in the Autumn 1998 issue of The BASIS Advantage,
step-by-step instructions covered how to set up a data-aware grid. Once a data-aware grid
is created, developers can begin to incorporate the important edit, add, and delete record
capabilities into the grid. This article focuses on the final steps needed to add these
capabilities and create a fully functional, data-aware grid.

Placing a Cell in Edit Mode
Before editing the data in a given cell, three operations must be set up in the grid-control
code: a way for the user to indicate that a cell should be edited, a method to place the cell in
edit mode, and a procedure to save the changes.

In the sample program shown, two methods to select a cell
are presented--double-clicking on the cell itself and
clicking the edit button while the cell is highlighted. Setting
up the edit-button method of cell selection is
straightforward. Select Form 101 frmDataAwareGrid
from the Object drop-down list. Then select Push
Button 105 btnEdit from the Control drop-down list
and the Button Pushed option from the Event drop-
down list. In the GUIBuilder™ edit area, add a single line of
code:

 gosub edit_cell

This code will be executed anytime the user clicks on the Edit button.

Next, select Grid 100 grdTestGrid from the Control drop-down list and Grid Double

http://www.basis.com/advantage/mag-v2n4/images/grid-editcell.gif
http://www.basis.com/index.html
http://www.basis.com/advantage/index.html
http://www.basis.com/advantage/mag-v2n4/index.html
http://www.basis.com/advantage/mag-v2n4/enhanced.html
http://www.basis.com/advantage/mag-v2n4/index.html
http://www.basis.com/advantage/mag-v2n4/webutil.html
http://www.basis.com/advantage/mag-v2n3/grid.html
http://www.basis.com/advantage/mag-v2n3/grid.html

Clicked from the Event drop-down list. Below the remarks in the GUIBuilder edit area,
add the same line of code:

 gosub edit_cell

This code will be executed anytime the user double-clicks on a grid cell.

At this point, an edit_cell subroutine needs to be written. Start by choosing New
Subroutine/Function from the Object drop-down list. Enter Edit Cell in the Name
Subroutine/Function dialog. Below the header remarks in the GUIBuilder edit area,
enter the following code:

 edit_cell:
 rem get the current row
 grid_id=num(fattr(datagrid_temp$,"grdTestGrid","ID"))
 row$=sendmsg(gb__sysgui,grid_id,gridGetSelectedRow,0,"")
 row = dec(00+row$)
 rem get the current col
 col$=sendmsg(gb__sysgui,grid_id,gridGetSelectedCol,0,"")
 col=dec(col$)
 rem prep the edit
 editparams_desc$="mask:c(1*=0),restore:c(1*=0),"+
 : "initstr:c(1*=0),key:u(2),col:u(2),row:u(4)"
 dim editparams$:editparams_desc$
 editparams.key = 0
 editparams.col = col
 editparams.row = row
 rem block editing the first column which is the primary key
 if col=0 then
 : msg$="You cannot edit the primary key for this record.";
 : style = msgboxExclamation;
 : title$="No Edit";
 : trash=msgbox(msg$,style,title$)
 : else
 : trash$=sendmsg(gb__sysgui,grid_id,gridStartEdit,0,editparams$)
 return

The code below the first remark extracts the grid ID from the descriptive template obtained in
the initialization code and then uses the Get Selected Row function (SENDMSG() Function
45) to retrieve the row number of the selected cell. The code below the second remark uses
the Get Selected Column function (SENDMSG() Function 44) to retrieve the column number
of the cell.

To use the Start Edit function (SENDMSG() Function 31), a templated string with several
values must be created. The code below the third remark creates this string and sets the
values for the row and column retrieved above.

Finally, the code below the fourth remark checks to see if the user wants to edit a cell in the
first column, which contains the primary key. If so, the program presents a message box
informing the user that the primary key cannot be edited. If the user wants to edit a cell in
any other column, it issues the Start Edit function (SENDMSG() Function 31) with the
templated string that was defined in the first article of this series.

To see the cell edit routine in action, select Run Program on the Program menu and
click the Save button in the Save program dialog. The program will present the grid as it did
before. Now double-click on a cell and a heavy outline will appear around the cell while the
caret is placed at the beginning of the cell. Double-click on any value in the Recording Type
column, delete the current contents, and type in a new value. Notice that the cell will only
accept alphabetic characters and it converts them to uppercase because of the `AAA' mask
that was previously set up for that field in the template. Once the editing of a cell's contents
is complete, move the focus to another cell by clicking on it. This action instructs the grid to
automatically commit the changes that were made to the first cell.

Adding a New Record

Adding a new record to a file.

Adding a New Record
Once it is possible to edit a cell, the add functionality should be incorporated into a grid.
 To add a new record, a routine must be attached to the Button Pushed event for the Add
button.

Begin by selecting Form 101 frmDataAwareGrid from the Object drop-down list.
Then select Push Button 103 btnInsert from the Control drop-down list and Button
Pushed option from the Event drop-down list. In the GUIBuilder edit area, add a single line
of code:

 gosub add_record

This code will be executed anytime the user clicks on the Add button.

Now an add_record subroutine needs to be written. Select the New
Subroutine/Function from the Object drop-down list and enter Add Record in the
Name Subroutine/Function dialog. Below the header remarks in the GUIBuilder edit
area, enter the following code:

 add_record:
 rem send the add row message
 grid_id=num(fattr(datagrid_temp$,"grdTestGrid","ID"))
 trash$=sendmsg(gb__sysgui,grid_id,gridDataAwareFunctions,0,
 : gridAddRow$)
 rem this flag is checked in the Grid Edit Mode start event
 rem so that the primary key value can be set by the program
 rem when the grid start edit event occurs
 add_in_progress=1
 return

This code pulls the grid control ID from the descriptive
template and then uses it in the Perform Data-Aware
function (SENDMSG() Function 81), a SENDMSG()
function used to perform various actions on the data-aware
grid. The last parameter is a constant string value set in the
Define Constants routine--gridAddRow$. This parameter
causes the function to add a new row to the grid that will
ultimately hold a new record. Finally, a flag called
add_in_progress is set. Every time a grid cell is placed in

edit mode, a Grid Edit Mode event occurs. When this event occurs, and add_in_progress is
true, the flag indicates that a new record has been added and a new key for that record
needs to be generated.

To set that added record logic, select Form 101 frmDataAwareGrid from the Object
drop-down list. Then choose Grid 100 grdTestGrid from the Control drop-down list
and Grid Edit Mode from the Event drop-down list. In the GUIBuilder edit area, add the
following code:

 while add_in_progress
 rem this code catches the start edit on col 0 (primary key)
 rem and sets the value
 add_in_progress=0
 if gb__notice.col = 0 then
 : gosub create_new_key;
 : trash$=sendmsg(gb__sysgui,gb__notice.id,gridSetEdit,0,newkey$);
 : trash$=sendmsg(gb__sysgui,gb__notice.id,gridEndEdit,0,$$);
 : desc$="mask:c(1*=0),restore:c(1*=0),initstr:c(1*=0),";
 : desc$=desc$+"key:u(2),col:u(2),row:u(4)";
 : dim editparams$:desc$;
 : editparams.key = 0;
 : editparams.col = gb__notice.col+1;
 : editparams.row = gb__notice.row;
 : trash$=sendmsg(gb__sysgui,gb__notice.id,gridStartEdit,0
 : editparams$)
 wend

When the Grid Edit Mode event occurs and the add_in_progress flag is true, this code will
execute. It immediately sets the add_in_progress to false and does a gosub to the

http://www.basis.com/advantage/mag-v2n4/images/grid-addrecord.gif

create_new_key routine. The new key value is placed in the variable newkey$ and passed to
the grid's special INPUTE control via the Set Edit Text function (SENDMSG() Function 35).
This message places the data from newkey$ into the INPUTE control. It then immediately
issues an End Edit function (SENDMSG() Function 26). This ends the edit on the first
column. Then an editparams$ string is set up in the same manner it was created in the
edit_cell routine earlier. Notice that the column value is bumped by one. A Start Edit
function (SENDMSG() Function 31) is then issued with the editparams$ that places the
second column in edit mode.

The Grid Edit Mode event is a Notify event. GUIBuilder automatically retrieves the notice
from the SYSGUI device and places it in a templated string called gb__notice$. The routine
above uses that string to access the row and column information.

To complete the add record process, a create_new_key routine needs to be developed.
Select New Subroutine/Functionfrom the Object drop-down list and enter Create
New Key in the Name Subroutine/Function dialog.

Below the header remarks in the GUIBuilder edit area, enter the following code:

 create_new_key:
 rem ' assign new number
 trash$=fattr(datarec$,"CDNUMBER")
 keylen = dec(trash$(10,2))
 keymask$ = fill(keylen,"0")
 newkey$=keyl(alt_chan,err=cnk_no_keyl)
 done=0
 bump_it:
 while !(done)
 newkey$=str(num(newkey$)+5:keymask$)
 done=1
 read(alt_chan,key=newkey$,dom=got_it)
 done=0
 got_it:
 wend
 return

 cnk_no_keyl:
 rem this handles the case of an empty file
 print err
 newkey$=str(1:keymask$)
 goto bump_it

This code generates a new key for the file. First, it creates an encoded information string for
the CDNUMBER field and then gets the length of the key from the string. Afterwards, the
code builds a mask of all zeros that is the same length as the key. Using the KEYL function,
the code takes the last key in the file. Notice that it uses the alt_chan and not the channel
that was bound to the grid. Once a channel has been bound to the grid, the program should
avoid any I/O to that channel.

Next, the CDNUMBER value is bumped by five and a test conducted to see if the key is in
the file. If the key is not present in the file, the process is done and the variable newkey$
contains the new key. If it is in the file, the loop is executed again; the cnk_no_keyl routine is
there to handle the special case of an empty file.

Once the code is completed, select Run Program from the Program menu and click the
Save button in the Save program dialog. The program will present the grid as it did before.
Now click the Add button. A blank row will appear at the end of the grid and the new key
value will be inserted into the first column. The second column will be in edit mode. Once the
focus moves off the new row, the record is saved to the file.

Deleting a Record
Now that adding a record is possible, it is necessary to add the record or row deletion

down list. Then choose Push Button 104 btnDelete from the Control drop-down list
and Button Pushed from the Event drop-down list. In the GUIBuilder edit area, add a
single line of code:

 gosub delete_current_row

This code will be executed anytime the user clicks on the Delete button.

Now add the delete_current_row routine. Select the New Subroutine/Function from
the Object drop-down list. Enter delete current row in the Name Subroutine/Function
dialog. Below the header remarks in the GUIBuilder edit area, enter the following code:

 delete_current_row:
 rem get the current row
 grid_id=num(fattr(datagrid_temp$,"grdTestGrid","ID"))
 row$=sendmsg(gb__sysgui,grid_id,gridGetSelectedRow,0,"")
 row = dec(00+row$)
 rem create a temporary template to hold row contents
 dim tmp_datarec$:datarec_desc$
 rem get the data from the current row
 tmp_datarec$=sendmsg(gb__sysgui,grid_id,
 : gridDataAwareFunctions, row,gridRetrieveRow$)
 rem confirm the delete
 msg$="Are you sure you want to delete CD Number "+
 : tmp_datarec.cdnumber$+"?"
 style = msgboxYesNo+msgboxInfo+msgboxSecond
 title$="Delete Confirmation"
 resp = msgbox(msg$,style,title$)
 rem if response is yes then send the delete message
 if resp<>msgboxYes then
 : return

 rem delete the row
 trash$=sendmsg(gb__sysgui,grid_id,
 : gridDataAwareFunctions,row,gridDeleteRow$)
 rem disconnect the grid
 trash$=sendmsg(gb__sysgui,grid_id,gridSetDataAware,0,$$)
 rem reset the file pointer
 read(data_chan,key="",err=dr_continue)
 dr_continue:
 rem reconnect the grid
 trash$=sendmsg(gb__sysgui,grid_id,
 : gridSetDataAware,data_chan,datarec_desc$)
 return

The grid control ID is determined and then the Get Selected Row function (SENDMSG()
Function 45) gets the row number of the cell that was selected. Next, a temporary template
is dimensioned to hold the data from the grid row. Then, using the row number, a Perform
Data-Aware function (SENDMSG() Function 81) is issued with the retrieve_row flag. This
flag instructs the function to return all the data from the current row into the temporary
template. Next, the program presents a message box that asks the user to confirm or deny
the deletion. If the deletion is confirmed, the process of deletion proceeds; otherwise, the
grid just executes a return.

The actual deletion takes place using the Perform Data-Aware function (SENDMSG()
Function 81)--with the delete_row flag. Once a record is deleted, the grid will visually
indicate this by displaying a deleted icon in the first column and filling all the data fields with
asterisks. The only way to clear the empty row is to disconnect and reconnect the data
channel. This is accomplished with the last three commands in the routine. A SENDMSG()
Function 80 is issued with a channel number of zero. This disconnects the grid from the
channel. Then, the file pointer is reset on the primary channel and rebound to the grid with
another SENDMSG() Function 80.

To try the delete process, select Run Program from the Program menu and click the
Save button in the Save program dialog. The program will present the grid as it did before.
Click on any row and then click the Delete button. The program will display a message box
asking if you want to delete that row. If you answer "Yes," the deletion will proceed. If you
answer "No," the deletion will be canceled.

At this point, the developer has a fully functional, data-aware grid that can manipulate data
automatically while providing the ability to edit, add, or delete individual cells in the grid.

capability. Begin by selecting Form 101 frmDataAwareGrid from the Object drop-

	basis.com
	BASIS International, Ltd. - Get Rid Of File Maintenance Gridlock With Grid Control--Part II

