Get Rid Of File
Maintenance Gridlock
With Grid Control

By Kurt Williams and Amy Petré Hill

Editors Note: The following is the first of a two part tutorial, based
on an online tutorial currently offered in the free Visual PRO/5® 2.02
update, that demonstrates exactly how a developer can unleash the
power of the grid control to create GUI, data-aware file maintenance
interfaces. The data used in this tutorial comes directly from data
provided in the datagrid.dat file, also provided in the Visual PRO/5
2.02 update. The complete Datagrid coding sample can be
downloaded from BASIS' Visual PRO/5 2.0 Coding Samples web
page at www.basis.com/visualpro5/samples.html.

Part two of this tutorial is also available online.

Ask Business Basic developers to list their ten least favorite
programming tasks and chances are that they'll put file maintenance
near the top of the list. Although file maintenance itself is not hard,
the file maintenance utilities that developers must purchase or create
to make file maintenance possible for end users have long presented
problems.

Hours of precious programming
time are regularly spent creating
and then updating character-based
file maintenance interfaces that
work but do not possess the e
Windows "look and feel" that =====
customers want. What developers
need is some kind of interface tool Complete data-aware grid.
that can tie into a file and display

the information in an easy-to-read GUI format.

With the release of Visual PRO/5 2.0, the Business Basic community
finally has this kind of an interface tool available with the new grid
control. A grid, laid out in columns and rows like a spreadsheet, can
display data in a format that is both easy to move through and easy
to read, while offering the popular "Windows look."

For small data sets, such as "Sales This Month," a developer can
use the standard grid control to quickly set up the entire grid. Each
row can represent a day, while the columns contain data for the daily
sales, sales tax, cash in, credit cards received, payouts, as well as
overages and shortages. The visible area of the grid can be large
enough to show ten days at a time, and the scroll bars allow the end
user to see all the columns and all the days in the month.

http://www.basis.com/advantage/mag-v2n3/images/grid-demo.gif
http://www.basis.com/index.html
http://www.basis.com/advantage/index.html
http://www.basis.com/advantage/mag-v2n3/index.html
http://www.basis.com/advantage/mag-v2n3/configurator.html
http://www.basis.com/advantage/mag-v2n3/index.html
http://www.basis.com/advantage/mag-v2n3/year2000.html
http://www.basis.com/advantage/mag-v2n4/grid.html

When larger volumes of data, such as an entire file, need to be
maintained, the grid control can generate a data-aware grid capable
of handling all the back-end manipulation and formatting of the data.
A data-aware grid is a grid control bound to a channel that is opened
to an MKEYED file, PRO/5 SELECT, or an SQL SELECT. The grid
itself manages the presentation of the data while also handling any
edits, deletions, or additions the user may make to the file.

Creating the Resource

In Visual PRO/5 2.0, data-aware grid development begins in the
ResBuilder™ graphical resource development tool. Start
ResBuilder™ and select New Resource File from the File menu
to create an empty resource file. Then select Add Form from the
Edit menu to create a blank form numbered 101. In its property
sheet, leave all properties at their default values except as follows:

Title = Data Aware Grid Demo
Name = frmDataAwareGrid
X position = 100
%_p05|t|on = 100
idth = 875
Height = 400

The result is a form that is ready to accept the grid.

Create the grid control by clicking on the Grid Control tool button
and then clicking anywhere on the face of the new form. In the grid's
property sheet, set the following properties to the specified values:

Name = grdTestGrid
X position = 12
% position = 22

idth = 731
Height = 353
Num Rows=1
Num Columns=12
Row Head = checked
Row Head Width = 15
Col Head = checked
Horiz Scroll = checked
Vert Scroll = checked

The Num Rows property is set to 1 at design time, but when the grid is
bound to the channel, the number of rows will be governed by the
number of records in the file. The Num Columns property is set to 12
because this grid will be used to present a particular file that has
twelve columns, and the widths of these columns need to be defined
at design time. If no specific column width was needed, the default
could simply be set to 1 in the Num Columns field. When the grid was
bound to the channel at runtime, the number of columns would be
set by template and the columns set to a default width. Using the
SENDMSG() Function 36, the program could set the column width at
runtime. Additionally, the user could set the column width using the
mouse with the grid's visual interface.

Next, in the grid's property sheet there is a value called Column
Prop which provides a button with an ellipsis (...) on it. Clicking this
button opens the Column Property dialog. Using this dialog, set the

column width for each of the twelve columns as follows (leave the
Column Title field blank for all columns):

Column Number 1 set Column Width = 75
Column Number 2 set Column Width = 150
Column Number 3 set Column Width = 150
Column Number 4 set Column Width = 150
Column Number 5 set Column Width = 75
Column Number 6 set Column Width = 100
Column Number 7 set Column Width = 75
Column Number 8 set Column Width = 75
Column Number 9 set Column Width = 100
Column Number 10 set Column Width = 75
Column Number 11 set Column Width = 75
Column Number 12 set Column Width = 75

Now add four buttons as follows by clicking on the Push Button
tool button and clicking on the face of the form. In the property sheet
for each button, set the following values:

First Button
Name = btnlnsert
Text = &Add
X position = 758
y position = 20

Second Button
Name = btnDelete
Text = &Delete
X position = 758
y position = 60

Third Button B
Name = btnEdit
Text = &Edit
X position = 758
y position 100

Fourth Button
Name = btnExit
Text = E&xit
X position = 758
y position = 140

Save the resource by selecting the Save As option from the File
menu. Give it a name in the file save dialog. The resource is now
ready to become part of our file maintenance program.

Creating the Program

Start GUIBuilder™ and select New in the File menu to create a
new GUIBuilder file. In the Name New GUIBuilder File dialog,
give the file a name. To simplify, keep all the files together by giving
the GUIBuilder file the same name as the resource you just created.

When the Create New Resource message box pops up, click
No--the appropriate resource has already been created in
ResBuilder. Then select the resource you created and click Open.
This will be followed by the Program Options dialog that sets the
options for the program about to be generated. Click OK to accept
the default values. Now the resources are ready and the grid
development can begin.

First select End of Job Code from the Object drop-down list
box. The End of Job header remarks will appear in the GUIBuilder
edit area. Type release on a new line after the remarks. The end of
job code is executed when the program terminates. In this example,
Visual PRO/5 2.01 will be released.

To make the Exit button functional, select Form 101

frmDataAwareGrid from the Object drop-down list box. In the
Control drop-down list box, select Push Button 106 btnEXit.
In the Event drop-down list box select Button Pushed. Forms
and controls may have different ids, but if the above naming
suggestions were followed, the names should be the same. In the
GUIBuilder edit area, insert the following line of code directly below
the remark that says rem "Push button operated”:

gb__eoj=1

This code will be executed when the user clicks on the Exit button
while the program is running. It sets the GUIBuilder exit flag to true
and causes the event loop to terminate and execute the End of Job
code. Please note that GUIBuilder special variables and function
names are always indicated with gb followed by two underscores.

Now select Run Program from the Run menu. Click Save in the
Save Program As dialog to save the generated program with the
same name as the project. The program will run, displaying the
resource created. Although the grid does not do much yet, it does
show how the resource will look at runtime. Click the Exit button
and the program will shut down, releasing the secondary copy of
Visual PRO/S that GUIBuilder started to run the grid.

Making the Grid Data-Aware

For this example, use the file called datagrid.dat provided with the
Visual PRO/5 2.02 release. To get the project ready to present a grid
bound to a file, some initialization code and three subroutines must
be written.

First, write the initialization code. Begin by selecting Initialization
Code from the Object drop-down list box. The Initialization header
remarks will appear in the GUIBuilder edit area. Below the remark
headers, add the following code:

rem get_a template describing the_form using

: _GUIBuilder"s get template function

dim datagrid_temp$:fngb__template$(gb__win_id$)

rem setup_constants
gosub define_constants

rem open the data_ file and setup the template
gosub open_data_file

rem make the grid data aware
gosub bind_grid_to_chan

The code above uses a GUIBuilder-provided function to retrieve a
template that describes the resource. It will be used to get the control
id of the grid. It then executes GosuBs to three different subroutines
that will be written in the following three steps.

To create the define_constants routine, select New
Subroutine/Function from the Object drop-down list box. In the
Name Subroutine/Function dialog, type Define Constants and click
OK. A set of remark headers will appear in the GUIBuilder edit area.

Enter the following code after the initial comment block:

define_constants:

rem message box constants
msgboxYes=6
msgboxYesNo=4
msgboxExclamatlon 48
msgboxInfo=64
msgboxSecond=256

rem grid send message functions
grldSetHeadlnngtles =23
gridEndEdit=2
gridStartEdit=31
gridGetEdit=34
gridSetEdit=35
gridGetNumberofCols=40
gridGetNumberofRows=41
gridGetSelectedCol=44
gridGetSelectedRow=45
gridGotoCol=47
gridGotoRow=48
gridShowCurrentHeading=77
gridSetDataAware=80
gridDataAwareFunctions=81

rem misc grid values
gridHeadingDepressedMode=1
gridHeadingNotDepressedMode=0

rem data aware functions
gridSetReadOnly$=$01$
gridDeleteRow$=$02$
gridAddRow$=$03$
gridRetrieveRow$=$04$
gridCancelUpdate$=$05%

return

This subroutine creates a series of variables that will be used in the
grid's SENDMSG() functions to make the code more readable.

To create the open_data_file routine select New
Subroutine/Function from the Object drop-down list box and in
the Name Subroutine/Function dialog, type open Data File. Below
the remark headers for the new routine, enter the following code:

open_data_file:

data_chan = unt
open(data_chan)"datagrid.dat"

rem an_alternate channel used for file operations
rem this channel will not be bound to the grid
alt_chan = unt

open(alt_chan)"datagrid.dat"

rem set up the telP
datarec_desc$=""CDN MBER C(6*=10):SHOW=1 ALIGN=0" +
: " LABEL=Number:
"TITLE:C(50*= 10) SHOW—l ALIGN=0 LENGTH=50" +
" LABEL=Title:
"ARTIST: C(50*—10) SHOW—l ALIGN=0 LENGTH=50" +
" LABEL=Artist:
""LABEL: C(50*-10) SHOW-l ALIGN=0 LENGTH=50" +
" LABEL=Label:
“"PLAYINGTIME: C(6*-10) SHOW 1 ALIGN=0 MASK=000.00" +
: " LABEL=Playing_Time
""RECORDINGTYPE:C(3*= 10) SHOW 1 ALIGN=0 MASK=AAA"™ +
" LABEL=Recording_T pe
“"MUSICTYPE:C(15*= ID SHOW—l ALIGN=0 LENGTH=15" +
" LABEL=Music T¥B
"BINLOCATION:C(*—10) SHOW 1 ALIGN=0 LENGTH=10" +
" LABEL=Bin_Location:
""NUMBEROFTRACKS:N(10): SHOW -1 ALIGN 1 MASK=0000" +
: " LABEL=Number_of Tracks
""ONHAND : N(la) SHOW'l ALIGN=1 MASK 000000"" +
" LABEL=0On_Han +
: "COST:N(10) SHOW “1 ALIGN=1 LABEL=Cost: +,
"RETAIL: NélO) - SHOW=1 ALIGN 1 LABEL= Retall
dlm datarec$:datarec_desc$

return

This code opens the file on two channels: one for use by the grid and
one for use by the program in creating new keys. It also creates a
template description in datarec_desc$ and the template itself in
datarec$. Note the user attributes for each field. They control how
the grid will look and behave.

The sHow attribute controls whether the field will be shown. SHow=1
indicates the field should be shown. sHow=0 will hide the column.

ALIGN controls the alignment of the data within the grid cell. ALIGN=0
means left justify the data. ALIGN=1 means right justify the data.
ALIGN=3 causes the data to be centered.

LABEL provides the text for the column headers. If a space is needed
in the label text, use the underscore character ("_"). It will be
replaced with a space when displayed in the column header.

MASK provides an input mask that will be used when the cell is placed
in edit mode. Valid mask characters are the same as those used by
INPUTE. When a cell is placed in edit mode, the grid uses a special
INPUTE control to do the editing.

To create the bind_grid_to_chan routine, select New
Subroutine/Function from the Object drop-down list box. In the
Name Subroutine/Function dialog, type Bind Grid to Chan and click
OK. Below the header remarks in the GUIBuilder edit area, enter the
following code:

bind_grid_to_chan:

rem get thelgrid id from the template describing the form
grid_id=num(fattr(datagrid_temp$,“grdTestGrid","ID"))

rem send message 80 (grid%etDataAware) to grid to

rem bind it to the channe
tf$=sendmsg(gb__sysgui,grid_id,gridSetDataAware,

: data_chan,datarec_desc$) ~_))
tf$=sendmsqg(gb__sysgui ,grid_id,gridShowCurrentHeading,
: gridHeadingDepressedMode ,$$)

return

The line after the first remark extracts the grid id number from the
template that describes the form. This template was created in the
initialization code.

The line after the second remark binds the grid to the channel. This
is a grid SENDMSG() Function 80. The parameter list within the
SENDMSG() function contains several variables. The channel on
which GUIBuilder opened the SYSGUI is called gb__sysgui. The
control id of the grid is grid_id. The constant defined in
define_constants is gridSetDataAware and is equal to 80. The
channel on which the file opened is data_chan and datarec_desc$ is
the template description we created in open_data_file.

The last line uses grid SENDMSG() Function 77 to set the headings,
both row and column, to be displayed as depressed for the current
row and column as the user navigates through the grid.

The program is now ready to run as a data-aware grid.

To try out the new grid, select Run Program from the Program
menu and click the Save button in the Save Program dialog. The
program will present the records from the file in the grid. Use the
vertical scroll bar to move up and down the file. Click with the mouse

in various cells. This will move the grid focus to the clicked cell.
Notice how the column and row headers for the highlighted cell are
depressed.

In the next issue of The BASIS Advantage, the second part of this
tutorial will complete the grid control demonstration by showing how
a developer can add more functionality to the grid with the
introduction of the Edit, Add, and Delete functions.

http://www.basis.com/advantage/mag-v2n3/configurator.html
http://www.basis.com/advantage/mag-v2n3/index.html
http://www.basis.com/advantage/mag-v2n3/year2000.html
http://www.basis.com/advantage/mag-v2n3/about.html
http://www.basis.com/advantage/mag-v2n3/about.html

	basis.com
	BASIS International, Ltd. - Get Rid Of File Maintenance Gridlock With Grid Control

