

Figure 1. Child Window
Flags dialog.

Configurator Tames Multiple Screens
With Tab Controls
By Shirley Johnson

As applications become more complex, the ability to easily manage
large data files becomes increasingly important. As the relatively few
screens of yesterday's character-based applications are moved into
the Windows environment, the burden of juggling multiple screens
that maintain data has grown into a serious problem for developers.

BASIS International faced this problem when it set out to develop
Configurator, a graphical configuration file interface. Because
Configurator needed to retrieve and present a significant amount of
information to create a Visual PRO/5® configuration file, a method
was needed to organize and display the data across several
screens. After considering many options, BASIS used the tab control
and child windows features contained in Visual PRO/5 to create a
comprehensive, cohesive interface. By defining each screen as a
separate child window, and using a tab control to manage the
display, development time and application complexity were greatly
reduced without sacrificing the Windows "look and feel" of the
interface.

The first step to developing Configurator
involved ResBuilder™, the new visual
resource builder in Visual PRO/5 2.0.
ResBuilder was used to layout each child
window and the controls that maintained the
collection of configuration data. By defining
the child windows first, the necessary window
size and number of tab items could be
determined to define the tab control. In
addition, all child windows had the Invisible
flag checked (Figure 1)--except for the first tab item's child window,
named PREFIX_TAB. This invisible flag prevented the child window
from being displayed until the user selected the appropriate tab item
during the operation of Configurator. Other considerations included
checking the No border flag on each window to make the child
window and its controls appear to be part of the tab control, and
sizing each window to the same size so that centered controls look
centered on the tab control.

With the child windows defined
(Figure 2), Configurator's main form--
its tab control--could be created,
along with child window controls that

http://www.basis.com/advantage/mag-v2n3/images/configurator-fig1.gif
http://www.basis.com/index.html
http://www.basis.com/advantage/index.html
http://www.basis.com/advantage/mag-v2n3/index.html
http://www.basis.com/advantage/mag-v2n3/editorial.html
http://www.basis.com/advantage/mag-v2n3/index.html
http://www.basis.com/advantage/mag-v2n3/grid.html

Figure 2. Configurator child windows
defined in Resbuilder.

Figure 3. Tab Control Style
Flags dialog.

Figure 4. Placement of the child
window control.

would act as placeholders for each of
the child windows. The main form,
named APP_FORM, was created, and
a tab control, named APP_TAB, was
placed on it. APP_TAB was sized to
be slightly larger in height and width
than the common defined size of the
child windows so that all of controls

appeared to be contained within the tab control.

On the tab control's property sheet, the
number of tab items was set to nine,
corresponding to the number of
Configurator child windows associated with
the tab control. Figure 3 illustrates the Tab
Control Style Flags dialog, with the Auto
management flag checked. This flag
signaled Visual PRO/5 to display an
associated control.

At this point, it was important to
understand the relationship between
the tab item, the child window control,
and the child window. For
Configurator, the individual tab item's
automatically managed control ID
pointed to a child window control
placeholder, which in turn pointed to
one of its child windows. For clarity,
each was assigned the same ID
number. As seen in Figure 4, for each
child window, a child window control

was placed on top, occupying the same x and y position. Although
this x and y position was relative to the APP_FORM's client area, it
appeared to be residing on the tab control. It was not necessary to
size child window controls because the width and height were
entered when the child windows were defined. As each of the child
window controls were placed, one of Configurator's nine child
window IDs was entered on the control's property sheet. By
switching to the tab control, the Tab Property Details dialog, shown
in Figure 5, was selected. For each of the nine tab item numbers, the
corresponding child window control ID was entered as the
automatically managed control ID.

Then arose the most challenging aspect of Configurator. With the resource file for
Configurator finished, it was time to program an event loop that would respond to, and

http://www.basis.com/advantage/mag-v2n3/images/configurator-fig2.gif
http://www.basis.com/advantage/mag-v2n3/images/configurator-fig3.gif
http://www.basis.com/advantage/mag-v2n3/images/configurator-fig4.gif

Figure 5. Tab Property
Details dialog.

process, the various user actions on the main
form and its child windows. Even if the
Configurator had included unique control IDs
across its child windows, it was virtually
impossible to tell which child window's button
control generated a button-press event. The
only information in the event template unique
to the main form and its child windows was the context ID. The
following Configurator code retrieved the context ID and used it in its
event loop to process the events for the corresponding main form or
its child windows:

 rem ' Assign a context to each of the top-level forms
 rem ' in the resource.

 cfg__appwin$=resget(cfg__handle,1,app_form)
 cfg__appwin_ctx=10
 . . .
 resclose(cfg__handle)
 print(cfg__sysgui)'context'(cfg__appwin_ctx)

 rem ' VPRO/5 generates a context id for each child
 rem ' window control associated with a main window
 rem ' when the following line is executed.

 print(cfg__sysgui)'resource'(len(cfg__appwin$)),cfg__appwin$

 rem ' Retrieve the generated context id using
 rem ' sendmsg() number 20

 cfg__trash$=sendmsg(cfg__sysgui,prefix,wingetcontext,0,$$),
 : cfg__prefix_ctx=dec(00+cfg__trash$)

 cfg__trash$=sendmsg(cfg__sysgui,dsksyn,wingetcontext,0,$$),
 : cfg__dsksyn_ctx=dec(00+cfg__trash$)

 cfg__trash$=sendmsg(cfg__sysgui,syswindow,wingetcontext,0,
 : $$), cfg__syswin_ctx=dec(00+cfg__trash$)
 . . .

 event_loop:
 cfg__done=0
 while !(cfg__done)
 read record(cfg__sysgui,siz=cfg__elen)cfg__event$
 print(cfg__sysgui)'context'(cfg__event.context)

 rem ' *************** switch to context ***************
 switch cfg__event.context
 case cfg__appwin_ctx
 gosub process_appwin_ctx
 break
 . . .
 case cfg__prefix_ctx
 gosub process_prefix_ctx
 break

 case cfg__dsksyn_ctx
 gosub process_dsksyn_ctx
 break

 case cfg__syswin_ctx
 gosub process_syswin_ctx
 break
 . . .
 swend
 wend

Configurator now processed the event for the child window control
that generated the event. The next step focused on managing the
data as the user moved back and forth between the nine tab items.
Although the tab control managed the display of the child windows,
Configurator supplied and retrieved the individual child window
control's data. In addition, Configurator maintained two data buffers
for each child window--one for the child window display and user
manipulation, and one for writing the configuration file. To illustrate,
the following code used the tab control Notify events to keep these
buffers in sync:

http://www.basis.com/advantage/mag-v2n3/images/configurator-fig5.gif

Figure 6. Completed Configurator.

 tab_notifications:
 tabkeypress=1,
 : tabchange=2,
 : tabchanging=3
 . . .
 rem ' Retrieve tab control's type of notification.
 process_tab_change:
 type$=ctrl(cfg__sysgui,app_tab,4,cfg__appwin_ctx)
 tabnote=dec(00+cfg__event.flags$)

 if tabnote>1 then
 : dim tabnotice$:noticetpl(dec($00$+type$(2,1)),tabnote);
 : tabnotice$=notice(cfg__sysgui,cfg__event.x%);
 : gosub init_update_tab
 : else
 : tabnote=0
 : fi
 return

 init_update_tab:
 rem ' In VPRO/5, the tab item number is zero based.
 rem ' On a tabchange notification (2), the tabnotice.tabidx
 rem ' indicates the tab item that is being selected. On a
 rem ' tabchanging notification (3), the tabnotice.tabidx
 rem ' indicates the tab item that was selected.

 switch tabnotice.tabidx+1
 case prefix_tabitem

 rem ' Use tabchange event to set child window data from
 rem ' file data. Use tabchanging event to set file data
 rem ' from child window data.

 if tabnote=tabchange then
 . . .
 : current_tab=prefix_tabitem;
 : gosub init_prefix;
 : gosub init_global;
 . . .
 : else
 : gosub update_prefix;
 : gosub update_global
 : fi
 break

 case dsksyn_tabitem
 if tabnote=tabchange then
 . . .
 : current_tab=dsksyn_tabitem;
 : gosub init_dsksyn_tab;
 . . .
 : else
 : gosub update_dsksyn_tab
 : fi
 break
 . . .
 swend
 return

By using tab control and
child windows to organize
and display configuration
information, the BASIS
programming effort to
manage multiple screens
of data was significantly
reduced. As an added
benefit, this method also
provided the Configurator
user a less linear method
of entering data. An
example of the completed
Configurator can be seen
in Figure 6.

As applications continue to grow more complex and the demand for
multiple screens that maintain data on single screens increases,
developers will have to find new ways to handle this glut of
information on the GUI. For BASIS, a combination of a tab control
and child windows has proven one of the best possible solutions,
even for applications as complex as the Visual PRO/5's Configurator.

http://www.basis.com/advantage/mag-v2n3/images/configurator-fig6.gif

	basis.com
	BASIS International, Ltd. - Configurator Tames Multiple Screens With Tab Controls

