
 Designing an interface in ResBuilder.
The forms are saved in a resource file

Randolph Grapples With
GUIBuilder

By William Baker

As a creator and key programmer of GUIBuilder, William has
overseen its development from inception to release.

I was preparing to put Randolph to sleep with a three-hour
dissertation on managing GUI interfaces with event loops when I
was pleasantly surprised to find a new tool in my Early Access 4
download called GUIBuilder. This new tool seemed to take most of
the event loop burden off my back and the tedium of hearing about
event loops off Randolph's ears.

"Look at this new thing I found in my Early Access download," I said
to Randolph.

"Early Access--there's nothing new in that," Randolph replied. "I got
Early Access code a year ago at TechCon97 in Nashville. By now
you have Late Access--about 11 p.m., I'd say."

"You have Early Access 1--it's definitely too late for that. You should
be on Early Access 4 because it's the latest of the early releases," I
explained. "Anyway, I was just now putting together a Hello World
program. You can see I'm starting with ResBuilder™ to define a
simple form with two controls on it: a button and a text control. The
form is named Hello, the button is named Push Me, and the text
control is named Message."

Randolph studied the ResBuilder
screen for a while and said, "It doesn't
look to me like you're writing a Hello
World program. It looks to me like
you're writing a Push Me program."

"Remember, this is just the interface
I'm defining here," I remarked. "The
'hello' part will come later. I have to
save this interface in a resource file
before we start writing code. I'll call
my file hello.brc.

"Now I'll bring up GUIBuilder, which is what they call this new tool,
and click on New from the File menu. It prompts me for the name of
my new GUIBuilder file, which will be the foundation for our final
running program. When we're ready, GUIBuilder will use all the
information we put into this file to generate and tokenize a working
GUI program--complete with event loop. I'll call it hello.bbx. It asks

http://www.basis.com/sites/basis.com/advantage/mag-v2n2/images/illo-randolph-1.gif
http://www.basis.com/index.html
http://www.basis.com/sites/basis.com/advantage/index.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/index.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/guiresources.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/index.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/beginner.html

me if I want to run ResBuilder to create a resource. I've already done
that, so I'll click No, and now I'm prompted to name the resource file
that my program is going to use. I'll enter the name of the resource I
just created."

Then a dialog titled Program Options came up.

"These options affect how the generated program will work," I
explained. "For example, if we want our program to have a PREFIX
statement, we would enter paths in the first field. And I'll put in the
copyright notice."

Upper left: GUIBuilder main screen before a .gbf file is loaded.
Lower right: The Program Options screen lets you set certain operations of the
generated program.

We then were returned to the GUIBuilder main screen, and I
selected the Hello form from the Select Form option on the Program
menu. The form I had just created in ResBuilder appeared, with the
Push Me button grayed out.

"Now we'll select a control that we want to work with. The easiest
place to start is the close button, so I'll double-click it. Now we're in
the text edit control where we write the code to be executed when
the user clicks on the close button," I stated. "What do you think the
user will want to do when clicking the close button?"

"Go home, I would think," Randolph said.

"Well, I meant what should the program do? " I asked. "A GUI
program's equivalent of going home is to terminate its event loop and
do end-of-job tasks. I can end the event loop by setting the loop
control variable gb__eoj=1. (I later discovered GUIBuilder-generated
programs will exit the event loop when all forms are closed, without
the programmer explicitly setting gb__eoj.)

Then I brought up my form again and double-clicked on the button. A
list box came up with three entries. "This list shows the three events

http://www.basis.com/sites/basis.com/advantage/mag-v2n2/images/illo-randolph-2.gif
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/images/illo-randolph-2.gif
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/images/illo-randolph-2.gif
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/images/illo-randolph-3.gif

that can be fired by a button," I explained. "The first possible event is
that the button is pushed. The other possibilities are that the button
gains focus or loses focus. We don't want our program to do
anything when focus is gained or lost, but we do want to print our
message on the screen when the button is pushed, so I'll select the
first event."

The GUIBuilder main screen came back with the text editing area
blank. Randolph was alarmed that my gb__eoj=1 statement had
disappeared. I assured him there was nothing to worry about,
GUIBuilder was keeping track of my various blocks of code.

"Blocks of code?" Randolph asked nervously. "I write programs
whole, not in blocks."

"Yes, and I suppose you're perfectly happy to type in a whole
program at the READY prompt, but this is a more modern way that
most people find more efficient. And I suppose if you really want to
program the old way, you could write subroutines in GUIBuilder,
generate a small program, and then finish writing at the READY
prompt," I said. "Anyway, let's get on with the code that will be
executed when the button is pushed." Then I typed in four lines that
didn't make any sense to Randolph:

screen_template$=fngb__template$(gb__win_id$)
dim hello$:screen_template$
hello.message$="Hello, world"
hello$=fngb__put_screen$(gb__win_id$,hello$)

I explained that I was using a couple of functions provided with
GUIBuilder to display a message on the screen. I could use Visual
PRO/5® mnemonics to do this, but the functions encouraged more
readable code, once you learned them. The first line invokes the
fngb__template$() function, which returns a string template that
describes all the controls on the Hello form. The second line
dimensions the hello$ variable with this template. I chose the hello$
variable name to correspond with the form name I assigned in
ResBuilder, but there is no requirement that the names correspond.
The third line sets the template variable hello.message$ to the value
that I want to display, which is "Hello, world." The message$ variable
name corresponds to the name of the static text control. Finally, I
used another function to transfer the values in the string template to
the screen.

Now we were ready to generate and run our program. I selected
Run Program and entered the name I wanted for my tokenized
program file. My five lines of code were merged into several
generated lines of code, including event loop logic, and saved in an
ASCII source file. Then that source file was compiled into a Visual
PRO/5 program. GUIBuilder ran my Hello World program, I pushed
the Push Me button, and the screen looked like this:

The Hello World program running from the GUIBuilder
interface.

Randolph said, "I
have to admit
getting a whole
program out of five
lines of code is
sort of impressive,
but I never did
understand string
templates, so four
of the five lines
don't make sense
to me. I don't see
how it's going to
help me."

I replied, "I
suppose you could learn how to write event loops from scratch, and
you could learn to manage your own context IDs and refer to control
IDs by number, and it would work pretty well for a program this
simple. But when you get to more complicated interfaces with more
fields on them, I think you'll see the advantage of using better tools."

"When I get to more complicated interfaces!" Randolph exclaimed.
"What makes you so sure that will happen?"

"Just a hunch that your customers are going to demand features that
will require the latest Visual PRO/5, so you'll reluctantly start trying to
implement them with the least amount of work," I said. "Remember
the third law of software development: It's always later than you
think."

http://www.basis.com/sites/basis.com/advantage/mag-v2n2/images/illo-randolph-4.gif
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/guiresources.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/index.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/beginner.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/about.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/about.html

	basis.com
	BASIS International, Ltd. - Randolph Grapples With GUIBuilder

