
Tech Support Tid Bytes:
Indexes - The Ultimate
SQL Shortcut

By Jennifer Mills

Mastering the fundamentals of SQL can be a heady experience. All
of a sudden, you can create a sophisticated query with a few lines of
code, send it out into the database, and get back the data you need
the way you need it. But the initial delight of using the simple and
English-like SQL language can quickly fade into surprise and
disappointment when queries take hours to execute.

After receiving several calls from BASIS ODBC Driver® users
struggling with poor query performance times, we decided to do an
in-house SQL query test. We selected all the records in our call log
database--a medium-sized database of 14.6 megabytes with 48,145
records--and created a query that would return all the records in
random order. The query was started at 5:00 p.m. and ran for about
sixteen hours, finally finishing up at 1:30 p.m. the following
afternoon.

What could have caused such poor query performance? The ODBC
Driver itself contributed slightly to the slow response time. By
incorporating a BASIS ODBC Driver we had added a middle layer
into the system, but the time it added to the overall process could be
measured in fractions of a second, not hours. The real culprit was a
lack of optimization in our initial query. We had unleashed a simple
query onto our call log files without any optimization, and the result
was a very inefficient search.

SQL users can avoid the kind of poor performance we experienced
by carefully optimizing their queries. Admittedly, optimizing SQL
queries does require some up-front work in your database and
requires a good understanding of tables, the BASIS Data Dictionary,
and index theory, but the payoff is impressive. Our own in-house
optimization tests have shown that optimized queries can run up to
6000% faster than their unoptimized counterparts. In this article, we
will focus on the most effective and popular optimization method--
indexing--and how you can incorporate this method into your own
database.

Indexes--SQL Engine Shortcuts
A file index, also known as a key, is a special kind of shortcut, made
up of a field or a combination of fields that lets an SQL engine
quickly identify a record without having to read the record itself. By

http://www.basis.com/index.html
http://www.basis.com/sites/basis.com/advantage/index.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/index.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/beginner.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/index.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/editorial.html

eliminating the need for the engine to laboriously read and then
compare each record to the search criteria, indexes dramatically
improve query performance.

In any SQL-accessible database or file system, you will find two
kinds of indexes--a primary index and a variety of secondary
indexes. The primary index is a record field, like a customer number
field, that uniquely identifies that record. A secondary index is more
general and not necessarily unique to each record and a record can
have several of them. A zip code is a good example of a secondary
index.

Before you begin indexing your tables, make sure you carefully think
through exactly which field or fields you need to index. Whenever a
record is added or modified, the SQL engine has to modify the index
and this can slow down performance. For that reason, you want to
keep the number of indexed fields to a reasonable number. After
deciding exactly what information you need to index, you should then
consider how many fields you will include in each index. This is best
determined by the types of queries--SELECTs, ORDER BYs, and
JOINs--that you plan to use regularly.

Taking the Shortcuts
Once you have defined your indexes, you can begin taking
advantage of these indexes in your SQL statement's WHERE and
ORDER BY clauses. To show exactly how effective an optimized
query can be, we return to our infamous sixteen-hour call log
experience and compare an optimized and non-optimized query
against our call log database.

Indexed Query
SELECT * from CALL_LOG where ID>'0000022000'

This query will select all the records in the call log table that have an
ID number greater than 000022000. Because the primary index for
each call log record is its ID number, the ODBC Driver can quickly
retrieve the records. After executing the query, we can take a look at
an excerpt from the log file to see exactly what happened in the
query:

(file 1)=f:/odbc/Local_Call_Hist/data/call_log
order_knum=-1
[Selected] Predicate: 1 constraints
*!: (file1) (knum=0, kseg=1) ID (bracket head)

The [Selected] and the ! in front of the ID line indicate that the
query was successfully able to use the ID index to optimize its
search.

Nonindexed Query
SELECT * from CALL_LOG where ID>'0000022000'

In this example, we again ask for all the calls that have an ID number
greater than 0000022000. The Data Dictionary was modified so that
the table's index referenced a different field. Additionally, the physical
data file was rewritten so that the ID field was not defined as a keyed
field. The following is an excerpt from the log file:

(file 1)=f:/odbc/Local_Call_Hist/data/call_log
order_knum=-1
Predicate: 1 constraints
*: (file1) (knum=0, kseg=1) ID (no bracketing)

The performance difference between the two queries is amazing.
Because the indexed query was able to specify that only records
higher than 000022000 be searched, the SQL engine only had to
look at 239 records and whizzed through the query in only .25
second. On the other hand, the non-indexed query ended up having
to read through all 48,145 records to see if they met the criteria and
took 14.71 seconds to complete. In other words, the indexed query
was 5884% faster than the nonindexed query!

At this point, we do want to mention that we specifically set up this
query to show the maximum amount of time difference between the
two queries. You will not always get a near- 6000% performance
improvement, but this example does clearly show the power of
indexes and query optimization. In our next Tid Bytes article, we will
delve further into indexes by examining multiple-field indexes and
how to use them in optimized queries. We will also offer some advice
on how to further test and optimize your queries with query testing.

http://www.basis.com/sites/basis.com/advantage/mag-v2n2/beginner.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/index.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/editorial.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/about.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/about.html

	basis.com
	BASIS International, Ltd. - Tid Bytes: Indexes-The Ultimate SQL Shortcut

