
INPUTE and INPUTN:
Input Control In A GUI
Environment

  

By Ed Holling

Ed is a BASIS Software Test Engineer. He has recently been
responsible for quality assurance on GUIBuilder.

Input validation is an important aspect of any successful business
application. Users are notorious for entering data in every format
except the one an application needs. A program that simply accepts
just any user input is condemned to waste a great deal of time
dealing with bad information. And, as applications move away from
the character-based and toward event-driven GUI design, input
validation needs become even more complex. BASIS is meeting
those validation needs with new visual INPUTE and INPUTN
controls in Visual PRO/5® 2.0.

Before the INPUTE and INPUTN verbs were available from BASIS,
data entry in Business Basic applications could be arduous. Users
were forced to key data in linear fashion, delete back to any
mistakes they made, and then retype the section or line over again.
This unproductive input method proved so frustrating that many
developers designed their own input controls to more creatively
handle the entry and editing of keyed data. But, like any complex
program subsystem, these custom data entry routines required lots
of program maintenance time and tended to slow down the entire
application.

INPUTE and INPUTN verbs moved the responsibility for data format
validation out of the application and into the language. The result
was less design work for applications requiring data entry.
Developers could now restrict users to certain kinds of keypresses
when entering their data--an ability known as input masking. By
specifying a character template, a mask, for an input control, it was
possible to ensure that all user input was consistently laid out before
it was handed back to the application. This allows the underlying
application to safely assume that all input is in the proper character
format. For example, if a user needed to supply a three-digit area
code for a North American telephone number, the INPUTE and
INPUTN verbs helped save CPU resources and development time
by ensuring that only three digits were entered. Masks could also be
combined with padding characters to give the user strong visual cues
about the expected input format. These verbs have since become
widely successful and are now an accepted standard in the Business
Basic community.

http://www.basis.com/index.html
http://www.basis.com/sites/basis.com/advantage/index.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/index.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/editorial.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/index.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/spam.html


As GUI has emerged, the issue of sophisticated input control has
resurfaced. Suddenly users are in charge of everything that happens
on an application's interface. They are no longer content to enter
multiple fields in a programmed order; they want to be able to cut,
paste, insert, and remove characters from input fields at will. And
input validation is just as important for controls that conform to the
Windows paradigm as it was in character-based systems. With
Visual PRO/5 2.0, BASIS offers new, updated GUI-control versions
of the INPUTE and INPUTN verbs that give some of the most
consistent, powerful input validation tools available in any of today's
development environments.

About INPUTE/INPUTN
INPUTE is an alphanumeric edit control that lets the application
specify what letters and digits it will accept as input and where these
letters and digits should be placed in the input field. This kind of
control has a wide variety of uses. For example, if your database is
keyed on a unique product ID consisting of three uppercase letters
followed by a dash and four digits, it is possible to ensure that all
data returned by the INPUTE control follow this format by using an
input mask of the form AAA-0000. Once the mask is in place, your
application is saved the trouble of checking for this format before
acting on the input.

INPUTN provides similar control over numeric data input. This
control can be of particular benefit when entering signed decimal
values such as monetary amounts. As an example, INPUTN can be
instructed to "pour" data, calculator-style, into a field with a fixed
decimal position, and then return values with an appropriate
international decimal separator.

Using INPUTE/INPUTN
Like similar SYSGUI controls, it is possible to generate INPUTE and
INPUTN controls by directly adding the appropriate mnemonic to
your program, such as:

'INPUTE'(id,x,y,w,h,flags$,len,pad${,initpos,restore$},val$)

But in Visual PRO/5 2.0, developers can also choose to work with
these controls in ResBuilder™, a new graphical resource editor.
ResBuilder offers full GUI support for the placement and definition of
INPUTE and INPUTN controls, allowing you to interactively design
the layout of your input screens without having to type a single line of
code. And after specifying the behavior of your INPUTE and
INPUTN controls in ResBuilder, you can begin constructing your
back-end application by connecting your screen definitions with
automatically generated code created in the new GUIBuilder™ visual
programming environment. Using ResBuilder, you can incorporate
INPUTE and INPUTN controls as you create your Windows
resources. 



Using ResBuilder, you can
incorporate INPUTE and INPUTN
controls as you create your
Windows resources.

These new controls also interact with
your core application in a new way. In a
character-based program, the
application would send a user to a
control, wait for the user to finish
working with that control, and then
return the value the user entered. But
because Windows applications are
event-driven, an application using
INPUTE and INPUTN controls waits for
any of the available controls to tell it
what the user is doing, takes whatever
action is appropriate, and then informs
all other available controls of any
relevant changes.

This communication takes place through the SENDMSG() function
and the Notify event. SENDMSG() can be thought of as an enhanced
version of the CRTL() function, letting an application retrieve and
modify parameters associated with a given control. The INPUTE and
INPUTN controls use SENDMSG() to dictate their visual attributes
(such as size, location, and coloration) and their internal functionality
(such as title string, cursor position, and mask settings).

These controls can also pass information back to the application
using the Notify event. This event expands the existing event string
structure to include information on error codes and special
keypresses, such as the function, control, and keypad keys.

For more information on using SENDMSG() and Notify in Visual
PRO/5 programs, read Jim Douglas' Spring 1998 Advantage article,
"Event-Driven GUI Programming With Notify And SENDMSG(),"
available online at www.basis.com/advantage/mag-
v2n1/eventdriven.html.

INPUTE and INPUTN controls are also accessible through the
standard Windows clipboard commands, making it easy to move
information between the controls and other standard Windows
applications.

The best of the old and the new come together with the new INPUTE
and INPUTN controls. Now you can have the familiar, stable
functionality of input validation with INPUTE and INPUTN in your
Windows applications with Visual PRO/5 2.0.  
 

 

http://www.basis.com/sites/basis.com/advantage/mag-v2n2/images/illo-inputcontrol-screenshot.gif
http://www.basis.com/sites/basis.com/advantage/mag-v2n1/eventdriven.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/editorial.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/index.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/spam.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/about.html
http://www.basis.com/sites/basis.com/advantage/mag-v2n2/about.html

	basis.com
	BASIS International, Ltd. - INPUTE And INPUTN: Input Control In A GUI Environment


