
By Jim Douglas

Among the many new features introduced with Visual PRO/5™ v2.0
are four new graphical controls. INPUTE and INPUTN, derived from
existing Visual PRO/5 verbs, allow for more control of text and
numeric input. Tabbed dialogues are supported through the
'TABCTRL' mnemonic. And the new grid control allows you to
present your data to the user in a matrix format which can be
manipulated using a series of control messages. In order to properly
support the richer set of interactions required by these new controls,
BASIS has added the SENDMSG() function and the Notify event.

Intercepting Incoming Events

Before we look at the Notify event, let's review how events are
handled in Visual PRO/5. The following program fragment shows the
basic structure of an event-driven program:

  sysgui=unt; open (sysgui)"X0"

  print (sysgui)'window'(0,40,640,400,"Event Loop",
      $0401088f$,$ffffffff$)

  dim event$:tmpl(sysgui); event_len=len(event$),done=0

  while !(done)
    read record(sysgui,siz=event_len)event$
    switch asc(event.code$)

      case asc("N"); rem " Notify event
        break

      case asc("X"); rem " Close box operated
        done=1

    swend; rem " asc(event.code$)
  wend; rem " !(Done)

  stop

This program opens the SYSGUI device, creates a window, and
goes into a loop which retrieves and dispatches events from the
event queue. The program drops out of the loop when the user
clicks on the close box, generating a Close Box Operated event
(type "X"). There is also a stub for handling Notify events (type "N").

Interpreting And Acting On The Notify Event

Visual PRO/5's new graphical controls must often pass on
information which won't fit in the ten-byte event$ structure. Since
changing the structure of event$ could potentially break existing
code, the new extended event information is made available through
the Notify event and the NOTICE() function. Whenever Visual PRO/5
needs to pass on extended event information, it issues a Notify
event, which tells you that the information has been queued for you
to retrieve, as in the following example:

  case asc("N"); rem " Notify event

http://www.basis.com/index.html
http://www.basis.com/advantage/index.html
http://www.basis.com/advantage/mag-v2n1/index.html
http://www.basis.com/advantage/mag-v2n1/gridcontrol.html
http://www.basis.com/advantage/mag-v2n1/index.html
http://www.basis.com/advantage/mag-v2n1/offtheshelf.html


    dim base$:noticetpl(0,0); rem " Dim base notice template.
    base$=notice(sysgui,event.x%); rem " Grab notice string.
    dim notice$:noticetpl(base.objtype%,event.flags%)
    notice$=base$; rem " Assign notice string to template.

    switch notice.objtype%
      case 19; rem " List Button Control
      break
      case 20; rem " List Edit Control
      break
      case 104; rem " INPUTE Control
      break
      case 105; rem " INPUTN Control
      break
      case 106; rem " Tab Control
      break
      case 107; rem " Grid Control
      break
      case default; rem " Notify undefined.
      break
    swend
  break

The format of the string returned by the NOTICE() function will vary
depending on which control issued the Notify event. The job of
interpreting this string is made easier by the NOTICETPL() function,
which returns the appropriate template for a given object type and
message type.

The sample code above starts off by DIMing a temporary working
string called base$ using the template returned by the function call
noticetpl(0,0). This call returns a base template which is common
to all notice strings and which can be used to extract the object type.
(This base template is currently defined as "context:u(2),
code:u(1), id:u(2), objtype:i(2)".

Once the template is defined we load the notice string into base$
using the NOTICE() function, making the object type available to us
in base.objtype%. By passing this object type value and the message
type value event.flags% as arguments to the NOTICETPL() function,
we can DIM the notice$ string with a template specific to the control
that triggered the original Notify event. The notice string is then
copied from base$ to notice$, making the full event string available
through the appropriate template.

Dealing With Specific Controls

There are currently six different control types which can cause a
Notify event to be issued: the four new graphical controls, plus the
list button and list edit controls. As shown in the switch block above,
you can determine what kind of control issued (or "fired") an event by
examining the objtype% portion of the notice$ string. You can also
find out what kind of Notify event the control fired by examining the
flags% portion of the event$ string:

  case 19; rem " List Button Control
    switch event.flags%
      case 1; rem " List Open
      break
      case 2; rem " List Selection
      break
      case 3; rem " List Close
      break
      case default; rem " Unknown Notify event
      break
    swend
  break

The number of Notify event types for which you'll need to check



depends on the kind of control and how many of its events interest
you. INPUTE and INPUTN only issue two types of Notify events:
type 1 is a keypress and type 2 is an error report. At the other
extreme, the grid control currently supports twenty-eight different
types of Notify events.

If your window includes more than one control of a given type, you
can distinguish between the different controls using the control ID
(event.id% or notice.id%). If your program uses multiple windows,
you can distinguish between them using the window context
(event.context% or notice.context%).

Talking To Controls With SENDMSG()

The new controls added in Visual PRO/5 v2.0 support a much richer
interaction than has been available. The SENDMSG() function allows
you to send commands in the form of messages to controls,
windows, or the operating system, and get back responses and
attribute settings.

The syntax of the SENDMSG() function is:

result$=SENDMSG(sysgui,objid,msgid,int,str[,context])

result$ Format varies based on each message type (see
examples below).

sysgui This is the channel on which SYSGUI has been opened.
objid -1 = send message to the operating system. 

0 = send message to the window in the current or specified
context. 
1..65535 = send message to a specific Control ID.

msgid The list of legal message IDs varies based on the object
type (see below).

int Optional integer argument; set to 0 if unused.
str Optional string argument; set to "" if unused.
context Optional context number; if omitted, the current context is

assumed.

The following table summarizes the SENDMSG() functions available
for the operating system, any window, and various types of controls.
Due to the number of messages defined for the controls, they aren't
listed in detail here.

Object ID or
Control Type

Message
Type Message Description

-1 (System
Message) 1 Get System Colors.

0 (Window
Message) 1 Get or Set Window Property.



  20 Get Window Context.
  21 Get Window Event Mask.
  22 Get Window Flags.

  23 Set window to accept or reject
keyboard change requests.

List button 20..21 See 'LISTBUTTON' supplementary
notes.

List edit 20..21 See 'LISTEDIT' supplementary
notes.

INPUTE 20..36 See 'INPUTE' documentation.
INPUTN 20..36 See 'INPUTN' documentation.
Tab control 20..39 See 'TABCTRL' documentation.
Grid control 20..82 See 'GRID' documentation.

SENDMSG() Examples

To get the current system menu color:

rgb$=sendmsg(sysgui,-1,1,0,$14$)
r=asc(rgb$(1)),g=asc(rgb$(2)),b=asc(rgb$(3))

To get the context of the current window:

context=dec(sendmsg(sysgui,0,20,0,""))

To get the event mask of the current window:

mask$=sendmsg(sysgui,0,21,0,"")

To get the Table Information Block from a grid control:

tblinf$=sendmsg(sysgui,grid_id,20,0,"")

To get the number of tabs from a tab control:

tabs=dec(sendmsg(sysgui,tabctrl_id,31,0,""))

Conclusion

For more complete technical details about these new features and
functions, see the sections of the Visual PRO/5 v2.0 Supplement
manual that discuss NOTICE(), NOTICETPL(), SENDMSG(), and the
new graphical INPUTE, INPUTN, tab and grid controls. You can also
download the sample program notify.src, which demonstrates the
Notify event and the SENDMSG() function, from the BASIS web site
at www.basis.com/advantage/mag-v2n1/notify.src. 

Jim Douglas, a thirteen-year Business Basic veteran, is currently
working with BASIS on Volcano™. 
 

http://www.basis.com/advantage/mag-v2n1/notify.src

	basis.com
	BASIS International, Ltd. - Event-Driven GUI Programming With Notify And SENDMSG() - Spring 1998 - The BASIS Advantage Magazine




