
Lightning Fast Searches With FULLTEXT Indices

by Jeff Ash

Today’s businesses require comprehensive searching capabilities that provide users with fast
and flexible access to their data. While standard SQL provides the foundation for powerful
filtering, sorting, and grouping, there are some limitations when it comes to certain types of
searches. The most notable of these limitations include complex search criteria and slow
performance locating data in the middle of records in large tables. Although SQL provides LIKE
and REGEX for powerfully filtering data, in BBj​®​ 15.00, BASIS added a game changer with
FULLTEXT indices.

How Are FULLTEXT Indices Different?

When it comes to optimization, standard SQL filtering using <, >, =, and LIKE use the keys on
the underlying data files whenever possible to reduce the number of records the query actually
examines. In order to use a key, the SQL engine must be able to find matching data from the
beginning of the column value. If the filter calls for examining only information from the middle of
records (which results in searching all text in a column), the SQL engine cannot optimize this
type of query and thus must examine all records in the entire file to find matching results. On a
large table this can make the query unusably slow.

In contrast, FULLTEXT indices utilize a completely different indexing mechanism that not only
allows for quickly locating data regardless of its location in the record, but additional robust
filtering capabilities that extend the power and flexibility of SQL. This mechanism utilizes the
best-in-class Lucene search engine that provides the ability to query data using either
Google-like simplicity, or its advanced query language.

FULLTEXT Index Structure

One of the outstanding benefits of FULLTEXT indices in BBj is that they do not require any
modification of the existing data file. BBj FULLTEXT indices consist of two parts: (1) a
synchronization file (.sync) to tell BBj how to keep the index in synch with the data file and (2) a
Lucene index (.textsearch directory). When creating a FULLTEXT index on a table, BBj creates
each of these components in the same directory as the table’s data file, which makes it easy to
keep all of the required components together when making backups of data files.

Creating a FULLTEXT Index

Three options exist to create a FULLTEXT index:
1. SQL’s ​CREATE FULLTEXT INDEX​ statement
2. BBj Enterprise Manager (EM)
3. Admin API

This article demonstrates creating a FULLTEXT index using the EM. For information using SQL
or the Admin API, see ​SQL FULLTEXT Indices​.

To create a FULLTEXT index on a table using the EM table editor:

1. Open​ the database in the EM.
2. Select​ the Tables tab and double-click on the table to contain the index.
3. Select​ the “FULLTEXT Index” tab.
4. Click​ the “Use FULLTEXT Index” checkbox.
5. Select​ the columns to include in the index, as shown in ​Figure 1​.
6. Save​ the changes.

http://documentation.basis.com/BASISHelp/WebHelp/b3odbc2/sql_fulltext_indices.htm

Figure 1.​ Creating a FULLTEXT index on the ChileCompany CUSTOMER table

Depending on the number of records in the table, populating the new index with the record data
may only take a few moments or a more significant amount of time. Once complete, the index is
ready for use and will be dynamically maintained when new records are added, changed or
removed.

Use a FULLTEXT Index in a Query

With the new FULLTEXT index in place, it is now time to use that index in a query. This example
uses the ChileCompany database which comes with FULLTEXT indices in version 15.00 and
later. There are four system SPROCs available for use with FULLTEXT indices: ​BBJ_INDEX​,
BBJ_SEARCH​, ​BBJ_SEARCH_TABLE​, ​BBJ_SEARCH_RELATED​ (covering each in depth is beyond the
scope of this article, see ​Using FULLTEXT Files/Indices For Searching​ for further information).
Let’s take a look at the easiest and most common SPROC, ​BBJ_SEARCH_TABLE​.

BBJ_SEARCH_TABLE​ takes 3 parameters: single table name, Lucene format search query, and
maximum number of results. The results from the SPROC are useful standalone, embedded in
a SELECT or joined with other tables. This following example finds all customers who have a
FIRST_NAME or LAST_NAME that starts with “Ch”:

SELECT * FROM (CALL bbj_search_table('CUSTOMER', 'Ch*', 0))

http://documentation.basis.com/BASISHelp/WebHelp/b3odbc2/using_fulltext_files_indices_for_searching.htm

This first example uses a simple wildcard Lucene query. Lucene provides a robust query
language, please see ​Apache Lucene - Query Parser Syntax​ for further details and complete
information. Another example using a bit more complexity returns all orders with a customer with
a LAST_NAME ending with “son” and is shown in ​Figure 2.

Figure 2.​ Using the FULLTEXT Index to speed up a query with a partial match

Note that in this example the query compares the ending of the last names. With a typical LIKE
comparison, the SQL engine will not optimize the comparison and thus examines every record
in the table to return the result. On a large table this could take a long time, however, using the
FULLTEXT functionality, even a multi-million record table can return the results almost instantly.

https://lucene.apache.org/core/2_9_4/queryparsersyntax.html

Summary

Speed and flexibility are two exceedingly important components of any searching capability in
an application. While SQL provides a number of possibilities, the FULLTEXT index functionality
now included in BBj rounds out a complete, robust, and lightning fast searching solution for any
BBj application.

