
By Jeff Steffanina

Getting any graphic user interface (GUI) application up and running
can be a real challenge. Not only does it require commitment, but a
well-conceived plan. Kilauea contains features that enable
developers to create GUI applications, while at the same time
employing existing BBx® programming skills. This article
demonstrates the features of Kilauea and highlights some of the
keys to using this new BASIS development tool.

Developing a plan to take advantage of these tools will produce an
application that performs at a consistently high level with standard
features such as a data dictionary. In Kilauea, the BASIS data
dictionary builder, called DDBuilder™, has been converted to GUI,
making it easy to use. Creating a data dictionary also makes
MKEYED files accessible to external products such as Oracle, Excel,
Microsoft Access, and Informix. The external interface in these and
other packages is managed using the 32-bit BASIS ODBC Driver™.

Conservative practice dictates that all data files are normalized. But,
in many cases, normalizing can be an expensive and time-
consuming process. With Kilauea, however, BASIS has created a
feature to define a file with multiple record formats. In other words,
the new BASIS data dictionary eliminates the need to normalize data
files.

Non-normalized records are defined in DDBuilder as "views." With
this new feature, Kilauea allows the developer to take advantage of
the data dictionary without having to redesign data file structure or
existing code. Still, the use of the data dictionary on any existing file
does not preclude its use without the data dictionary. Once the data
dictionary is developed, input windows can be created quickly and
easily with the Kilauea ResBuilder™. This point-and-click utility also
enables the creation of complex windows for use as templates in
either typical or custom developments.

A new characteristic of ResBuilder is that the actual resource file is
stored in ASCII format. From this format, ASCII files can be edited
without having to restart the utility. In addition, once the data files
have been populated, the new Kilauea Program Wizard may be used
to create reports and file maintenance routines. The Program Wizard
works by prompting the user through a series of questions and then
creating a BBx program. The program created by the Program
Wizard is heavily remarked and offers the developer an opportunity
to customize.

Migrating Existing Code

http://www.basis.com/index.html
http://www.basis.com/advantage/index.html
http://www.basis.com/advantage/mag-v1n3/index.html
http://www.basis.com/advantage/mag-v1n3/scoforum97.html
http://www.basis.com/advantage/mag-v1n3/index.html
http://www.basis.com/advantage/mag-v1n3/powertraining.html


New BASIS products center on GUI. Kilauea, though not technically
a new product, is rather a GUI enhancement to the familiar BBx
environment. All existing code will work in Kilauea, while providing
the option to mix character-based and GUI applications on multiple
platforms.

When designing a GUI project, the existing code should be well-
structured and modular. By creating and maintaining structured
code, the developer can include a substantial portion of that code in
his or her GUI application. Subroutines that perform functions
unrelated to screen and cursor control are also candidates for use in
the GUI environment. For example, an editing subroutine that verifies
the presence of an inventory part number will probably work with little
or no modification in the new GUI program.

Creating An Application

Creating an application using these new tools takes very little time.
Following this step-by-step example, begin by using the GUI data
dictionary to create the data source ACCOUNTING, which consists
of several accounting tables. Then, create the VENDOR master table
using DDBuilder. This process is simple, and the GUI logic is well
presented. Pay close attention to the prompts for the required
configuration file "config.tpm," discussed in greater detail below.

Table: VENDOR

VendorCode C10
Address1 C10
City C15
Zip C5
PhoneNumber C9
LastPurchaseDate C8
CurrentBal N8

VendorName C20
Address2 C20
State C2
FederalTaxId C9
Req1099 C1
YrToDateAmt N8

Next, create the following input screen using ResBuilder. Notice the
inclusion of the "in-field" editing for the phone number. This was
done using the new Kilauea mnemonic INPUTE. This mnemonic is
basically the GUI version of the INPUTE command introduced in
BBxPROGRESSION/4®.
 
This demonstration also creates astandard set of buttons across the
bottom of all windows. When thewindow is displayed, the
necessary buttons will become"active." Inactive windows will 



display their labels in gray, active
buttons will be shown in black. At
this point, take advantage of
"keyboard navigation," which
automatically advances "focus" in
the window from one object to the
next. Each object on a window is

assigned a unique identification value. When keyboard navigation is
active, focus is shifted to the object with the next highest id value.
This id value is also passed to the event queue, which is discussed
later.

At this point, the "typical" BBx code to invoke the new windows
created with ResBuilder can be added. Most of this simple logic is
taken from the examples in the documentation and from the Visual
PRO/5™ training seminar offered by BASIS. The following code
displays the vendor screen created in ResBuilder.

2000 REM Display a Resource Window
2010 LET APWIN=RESOPEN("AP.BRF")
2020 LET A$=RESGET(APWIN,1,1); REM from the APWIN library,
retrieve window 1
2030 LET SG=UNT; OPEN(SG) "X0"; REM open the SYSGUI device
2040 PRINT (SG) 'RESOURCE' (LEN(A$)), A$; REM display

Now, add the BBx coding to handle all the input from the GUI
screen. When a GUI window is opened, activity tracking begins.
Activity tracking ensures that any activity that occurs is funneled to
one place, the event queue. The opportunity to determine exactly
what happened occurs when an event is passed to the queue. For
example, the mouse has either moved, or the left mouse button was
double-clicked when it was pointing at the fourth button from the left
at the bottom of the window. In short, all activity on the window is
reported to the event queue. To provide additional control, a window
may be created to track a specific event. This special event mask is
defined by using a series of hex flags. Finally, the event queue is
managed by using a typical READ RECORD command. When an
event occurs, the READ RECORD receives a standard event string
that provides specific information related to the event.

To demonstrate, the routine in the file
http://www.basis.com/advantage/mag-v1n3/code-radkilauea.txt is an
example prepared by the BASIS staff. It contains the necessary code
to both read the event queue and determine exactly what event has
occurred. This sample program also displays each event as it occurs.
Notice how the code reads the event string template E$. This
template, which is created using the new function TMPL, always
returns the same status string. The command used to establish the
template is DIM E$:TMPL(sg).

http://www.basis.com/advantage/mag-v1n3/images/illo-radkilauea-vendor.gif
http://www.basis.com/advantage/mag-v1n3/code-radkilauea.txt


Next, the code that makes the data dictionary available for the
vendor table is added. The BASIS data dictionary is not as difficult to
work with as it appears. The key is in the setup process. First, be
certain that the configuration file "config.tpm" correctly identifies the
path to the data dictionary components. Be sure to review the
documentation and samples provided. The files are organized in a
logical manner, but take the time to become familiar with the
relationship between the data location and the directory scheme
employed by the data dictionary. To get the "feel" for the utility,
create several small files, and write the necessary code to access
them. If the data dictionary is started without creating "config.tpm,"
the data dictionary states that "config.tpm" does not exist and
creates one automatically. The code needed to gain file access via
the data dictionary is listed in the data dictionary documentation.

Finally, create a report that uses the new "print preview" utility.
BASIS' print preview operates like the print preview features in other
packages by generating a GUI display of the report that can be
paged forward and back. To invoke print preview, add a new mode
(MODE="PREVIEW") to the OPEN of a SYSPRINT device.

This simple project was completed in about two hours. For further
assistance with a GUI project, BASIS has provided an exceptional
documentation set making extensive use of HTML-based data
retrieval. The entire Visual PRO/5 documentation set is in HTML
format and is readily accessible, providing ease of access and
functionality.

In short, Kilauea offers the developer an array of impressive tools for
rapid development. As with any new project, time and effort must be
invested to make GUI happen. It is, however, an investment well
rewarded.

For a full copy of the BBx code used in this exercise, email me at
mailto:jsteff@advcbci.com. 
 

 

mailto:jsteff@advcbci.com
http://www.basis.com/advantage/mag-v1n3/scoforum97.html
http://www.basis.com/advantage/mag-v1n3/index.html
http://www.basis.com/advantage/mag-v1n3/powertraining.html
http://www.basis.com/advantage/mag-v1n3/about.html
http://www.basis.com/advantage/mag-v1n3/about.html

	basis.com
	BASIS International, Ltd. - Rapid Development Using Kilauea - Autumn 1997 - The BASIS Advantage Magazine


