
By Michael Martinez

In our last issue we discussed the advantages of implementing
objects through object managers, special programs which contain
the methods (functions and procedures) that control object
behaviors. By communicating with an object manager we gain
indirect access to an object created and manipulated in virtual
memory. These are virtual objects, virtual because they are created
in memory and there is no real or direct access to them. An object is
a self-contained program that deals with one or more specific types
of data. It responds to messages it receives and can in turn send
messages to other objects.

Object management is a technique devised originally for large
systems which implemented objects alongside older applications. It
became necessary to develop "wrappers" or interfaces to the objects
for applications developed with older or foreign compilers so their
functionality was not lost. Through object management, older
applications can benefit directly from object technology.

The benefits derived from using object management extend to
graphical objects as well as virtual objects stored in memory. You
can easily define a class of controls - say, a date control -for which
there is no native support in Visual PRO/5™. This class can
implement methods such as "create," "destroy," "set," "move," "hide,"
"show," "get month," "get day," "get year," etc. The date controls are
actually aggregates constructed from simpler control types such as a
child window, edits, and scroll bars. Visual PRO/5 tells you which
context (window) the events generated by the aggregate control
come from, so you can easily determine whether an object manager
for the aggregate control should respond to the events.

An example code block which creates a window with some controls
(including an aggregate date control) through object managers is
provided here. It uses the object managers FnWindow_Class,
FnButton_Class, FnTool_Button_Class, and FnDatebox_Class.

The purpose of the date box is self-evident. The "HIDE" and
"SHOW" buttons let the user hide the button labeled "MOVE" and
the two tool-buttons. When the tool buttons are hidden, they
reappear if the mouse is passed over their boundaries (see Screen
Capture 2). The "MOVE" button moves itself from row 1 to row 2 and
vice versa.

http://www.basis.com/index.html
http://www.basis.com/advantage/index.html
http://www.basis.com/advantage/mag-v1n3/index.html
http://www.basis.com/advantage/mag-v1n3/basismigrates.html
http://www.basis.com/advantage/mag-v1n3/index.html
http://www.basis.com/advantage/mag-v1n3/scoforum97.html
http://www.basis.com/advantage/mag-v1n3/code-objectsinpro5-2-1.txt
http://www.basis.com/advantage/mag-v1n3/code-objectsinpro5-2-1.txt
http://www.basis.com/advantage/mag-v1n3/code-objectsinpro5-2-1.txt


The classes' object managers are implemented as multiline
functions, and the program shown when following this link creates
the window. The functions are defined in their own include files
which are too long for inclusion in this article. This sample demo,
with all source code, will be made available for download from the
BASIS FTP server-ftp.basis.com-in the pub/online-documentation-
project/ directory as objclass.exe. The demo will be released when
Kilaueaships. The include file "make_win.inc" contains the code
detailed above.

Object-oriented programming has gotten a lot of bad press through
the years. It's slow. It's cumbersome. It's hard to learn. These
criticisms apply to various languages. Some pure OOP languages,
such as Smalltalk and Eiffel, include many base object types,
whereas some hybrid languages like C++ and Delphi require you to
build your own object types from their limited base types. Every
language has its strengths and weaknesses.

A strength of Business Basic has always been that if it didn't support
a native data type you could define your own and develop code to
support it. By creating object managers you can encapsulate your
specialized type-supporting code (i.e., keep it from getting scattered
throughout your application, where it's subject to tinkering) and at the
same time provide flexible, time-saving routines for rapidly creating
interesting user interfaces and application structures.

An object manager can make use of other object managers. Instead
of adding new methods to an existing object manager, or rewriting
existing methods, in order to extend the capabilities of your objects,
you can create a new object manager which invokes the old one
whenever a desired method already exists. There are two immediate
advantages to using calls to an existing object manager when writing
a new one:

1. Existing code, which has been tested, is not altered.
2. When debugging the new object manager, you know where to

look for problems.

The potential benefits we can derive from using object-oriented
design paradigms in Business Basic applications have only barely
been touched upon. In the future, especially when the Pinatubo
interpreter emerges, BASIS will help unravel some of the myths and
mysteries surrounding the powerful concepts found in object-
oriented languages and applications. But we don't have to wait for
the future. It's already here in some ways, and things will just get
better. 

http://www.basis.com/advantage/mag-v1n3/code-objectsinpro5-2-2.txt

	basis.com
	BASIS International, Ltd. - Yes, Virginia, There Are Objects In PRO/5, Part 2 - Autumn 1997 - The BASIS Advantage Magazine




