
By William Baker

One of the big issues in converting character-based applications to
GUI is translating existing screens into a GUI format. Visual PRO/5™
Rev. 1.x offers two migration paths. One path uses the Resource
Editor to lay out GUI windows that replicate the old character-based
screens. These screen layouts are stored in files called resource
files. While this method is acceptable for converting small
applications, it becomes much more difficult when you get past 50 or
100 screens. The other migration path puts GUI mnemonics in your
programs to create GUI screens at run time. This generally means
replacing '@' mnemonics, though it is possible to automate this
process to some extent. These two migration techniques can be
mixed by creating one or more standard minimal GUI windows with
Resource Editor. Then, by using mnemonics in your programs, you
can change the window title and populate the window with the labels,
input fields, checkboxes, and GUI controls. A sample prototype
window appears below.

Kilauea offers yet another path
through this conversion jungle
with a new component called
ResCompiler, which is short for
resource compiler. This utility
reads a description of one or more
windows contained in an ASCII
file and compiles it into a resource
file used by your programs at run
time. This ASCII file is called an
"ASCII resource file" to distinguish

it from the "regular" resource files utilized by the Resource Editor and
the Visual PRO/5 interpreter. I'll abbreviate it as ARF, although the
official BASIS International Ltd.™ file extension is .arc.

When you team up ResCompiler with the totally redesigned version
of the Resource Editor, now called ResBuilder™, you have a
powerful new screen conversion strategy.

ASCII Resource File Basics

A complete description of the ARF syntax would more than fill up this
magazine. It's documented on Early Access 1 diskettes, and you can
download the documentation from the BASIS International
homepage at www.basis.com.

Just to give the flavor of the syntax, take a look at this sample:

http://www.basis.com/advantage/mag-v1n3/images/illo-goinggui-protowin.gif
http://www.basis.com/index.html
http://www.basis.com/advantage/index.html
http://www.basis.com/advantage/mag-v1n3/index.html
http://www.basis.com/advantage/mag-v1n3/editorial.html
http://www.basis.com/advantage/mag-v1n3/index.html
http://www.basis.com/advantage/mag-v1n3/basismigrates.html
http://www.basis.com/

VERSION "3.0"
// ASCII resource file definition for standard
// prototype window
WINDOW 1 "Standard Prototype Window" 20 20 640 480
BEGIN
ENTERASTAB
 BUTTON 1 "Ok" 190 420 100 25
BEGIN
DEFAULT
END
 BUTTON 2 "Cancel" 350 420 100 25
END

This ARF will compile into a binary resource file with one window that
looks like the prototype screen at the beginning of this article. The
window is defined on the third line, followed by the options and
controls for that window. BEGIN/END pairs are used to group
descriptors. The indents are entirely optional and are shown here to
improve readability.

In most cases, it should be easier to automatically generate ARFs
than to generate lots of mnemonics code, and using resource files
will save you some program size. I'll go over three scenarios for
converting character-based screens to ARFs, briefly discussing
tactics for each one.

Scenario 1 - Existing Screen Layout Library

If you are fortunate enough to already have your character-based
screens described in a consistent format, then you probably have the
ingredients for a relatively easy conversion process. All you have to
do is transplant the data from your existing library into the ARF
syntax.

Be aware that the default unit of measure in ARF syntax is pixels. If
you want your coordinates and dimensions to be dimensioned in
pixels, you will have to convert character positions to pixels. For
example, if your old X coordinates are based on 80-column screens
and you're going to GUI screens that are 640 pixels across, you
need to multiply the old values by 640/80, or 8, to get the dimensions
in pixels.

If you want to switch the unit of measure in the ARF to chars or
semichars, use the following syntax:

#define UNITS_CHARS 1 //Use chars
#define UNITS_SEMICHARS 2 //Use semi-chars

For a complete description of units of measure, see page 7 of the
PRO/5, Visual PRO/5, BBxPROGRESSION/4® GUI Guide.

Scenario 2 - Examine Existing Code

If you don't have screen layouts defined in a file, there is still a good
possibility that your program has enough structure for a program to

examine your code and generate an ARF file. For example, if the
code that prints labels on the screen is always in the same routine,
or always starts at a certain line number, you could write a program
that examines the PRINT statements in that section and writes, for
example, corresponding entries in the ARF to place static text.

PRINT @(10,10)+"BASIS International Ltd.",

might be converted to

STATICTEXT 101 "BASIS International Ltd." 10 10 24 1

assuming chars as the unit of measure.

Likewise, you could scan for input verbs or called input routines to
get the location and length of input fields. Each of these occurrences
would generate an ARF EDIT entry, for example:

EDIT 101 10 10 24 1
 BEGIN
 INITIALCONTENTS "BASIS International Ltd."
 END

Scenario 3 - Read The Screen

If neither of these approaches will
work for your application, the last
alternative is to write a program that
can read character-based screens
and translate the characters and
positions to an ARF file. This
program would be CALLed from
existing programs. If you use a
common input routine, the CALL
could be initiated from a hotkey in
the input routine. If you don't use a
common input routine, you would
insert the CALL at the end of the
input program that controls the screen you want to read. The object
is to read the screen when it's as full of data as possible so you can
generate the most accurate ARF file. The exact logic you'll need for
this screen-scraping program will vary with the conventions you use
for your screens, but some pieces will be universal.

The 'TS' mnemonic will store the characters and display attributes of
every position in the scroll region from position 0,0 to the current
cursor position. This sample will read 80 columns by 24 rows into the
string variable SCREEN$:

PRINT @(80,24),
INPUT @(80,24),'EE','GS'+'TR',SCREEN$,'GE','BE',

The information about each position is stored in four bytes, one byte
each for background color, foreground color, display attributes, and

the value of the printed character. These bytes might be defined in a
string template with the following command:

DIM ATTR$:"BCOLOR:U(1),FCOLOR:U(1),ATTRIBS:U(1),CHAR:C(1)"

Then you need to write a loop to evaluate each character and its
attributes. For example:

FOR ROW=0 TO 79
FOR COL=0 TO 23
LET ATTR$=A$(1,4); LET A$=A$(5)
REM Routines to analyze one screen position
 ...
NEXT COL
NEXT ROW

The details of this loop will vary with your screens. If the top few lines
of your screens always include the same information in the same
format - company name, date, time, horizontal lines - you might want
to skip analyzing these rows. Likewise, if row 24 always contains a
user prompt that isn't appropriate for a GUI screen, you will want to
skip that row.

The analysis needed for each position, and the logic for building the
ARF file, will naturally vary with your screen. If all labels end with
colons, then you can treat the text left of colons as labels and the
text immediately right of colons as input fields. If your input fields are
enclosed in brackets, then the positions between brackets can be
counted as input fields and all other text defined as static text in the
ARF file.

If your screens distinguish constant text and input data with different
colors, underlines, high and low intensity, or some other display
attribute, you will need to parse each screen position to figure out
how the critical attribute is set. This leads you into each bit checking
with the AND() function. Bit checking could fill another article, so I'll
summarize by showing you these four tests for display attributes:

REM Check for high intensity
IF ASC(AND(ATTR.ATTRIBS$,$01$))
THEN PRINT "High Intensity"
REM Check for reverse video
IF ASC(AND(ATTR.ATTRIBS$,$02$))
THEN PRINT "Reverse video"
REM Check for underline
IF ASC(AND(ATTR.ATTRIBS$,$04$))
THEN PRINT "Underline"
REM Check for blinking
IF ASC(AND(ATTR.ATTRIBS$,$08$))
THEN PRINT "Blinking"

Keep in mind that any screen position can carry more than one, or
none, of these attributes.

The following tests will check for the foreground colors blue, green,
and red. The tests for background color would be identical except
that they would test the variable ATTR.BCOLOR$, using our sample
template.

REM Check for blue
IF DEC(AND(03,ATTR.FCOLOR$)) THEN PRINT "Blue"
REM check for green
IF DEC(AND($0C$,ATTR.FCOLOR$)) THEN PRINT "Green"
REM Check for red
IF DEC(AND(30,ATTR.FCOLOR$)) THEN print "Red"

A color attribute that includes blue and green will be cyan on the
screen; blue and red make magenta; green and red make yellow; all
three will make white. No color attribute yields black.

Expanding Horizons

After working with ARFs and ResBuilder for a while, you will find
other uses for ARFs. For example, you will now have a de facto
library of screen layouts, and all of its advantages will be available to
you. For example, you could implement global changes to your
screens by modifying ARFs with a text editor or simple BBx®
program.

ASCII resource files and ResCompiler are powerful tools, and this
article describes only a small portion of their potential. The
preprocessor capabilities of ResCompiler, alone will give you more
flexibility. Any BBx developer with character-based code and
customers on Windows platforms should take advantage of these
tools.

http://www.basis.com/advantage/mag-v1n3/editorial.html
http://www.basis.com/advantage/mag-v1n3/index.html
http://www.basis.com/advantage/mag-v1n3/basismigrates.html
http://www.basis.com/advantage/mag-v1n3/about.html
http://www.basis.com/advantage/mag-v1n3/about.html

	basis.com
	BASIS International, Ltd. - A New Approach To Going GUI - Autumn 1997 - The BASIS Advantage Magazine

