
By Michael Martinez

I like objects and look forward to their introduction to Business
Basic, but I'm the impatient sort of programmer who doesn't want
to wait for the next generation of tools to start doing things. We
already have graphical objects, of course, but we manipulate them
through the SYSGUI device, which is itself rather like an object that
we communicate with. I want to get closer to real object-oriented
programming: being able to define a thing and have that thing do
stuff. This is what object-oriented programming is all about. The
object can be something in memory-some special piece of data. It
can be a graphical control, like a button or a list box. Or it can be a
file or a disk-resident data structure.

What makes an object an object? That's a question for which there
are a thousand answers. I like to say that an object is a bounded
data space. The boundaries are not physical; rather, they are
logical. The boundary of an object is defined partially by the type
definition assigned to its data region (but you can, theoretically,
create a null object that doesn't have a data region). The boundary
is also defined by the way the object behaves. The behavior consists
of the set of operations you can tell an object to perform, and these
operations are usually referred to as methods in object-oriented
parlance. A method is a mode of access to an object-part of the
object's interface. We do not actually manipulate the object's
contents directly, but rather ask the object to do things through its
various methods. A method may be either a function or a
procedure.

A function method returns some data item from its object. This may
cause confusion, since the data item may be information about the
object rather than information from the object's data region. For

http://www.basis.com/index.html
http://www.basis.com/advantage/index.html
http://www.basis.com/advantage/mag-v1n2/index.html
http://www.basis.com/advantage/mag-v1n2/cabezon.html
http://www.basis.com/advantage/mag-v1n2/index.html
http://www.basis.com/advantage/mag-v1n2/bbxgoesonline.html

instance, suppose we create a table object. We give this table
object a method called seating. So, when we want to know how
many people can sit at the table, we ask for the table.seating value.
This is a function of the table object, which tells us the capacity of
the table, but not how many people are actually sitting at the table.

Or our table object may need to be moved from the kitchen to the
dining room, but instead of our picking up the table and physically
moving it, we use the move method to tell the table to move to the
dining room: table.move(dining room). This would be a procedural
method.

Suppose we want to have multiple table objects? Can we call them
all table? No. Naming an object is similar to naming variables: each
language implements its object reference structures in some fashion
that lets you distinguish between objects. We cannot have multiple
objects called table, but we don't want to dispense with the name
table-it is much too useful a word to discard. So we'll define a class
of objects called table, which defines what a table object is and how
it behaves but which is not itself an object. Now when we create a
table object we might call it Fred or Cathy or Bill.

By creating the table object Fred we use the table class, which
defines the methods and data region for the table. So, we can ask
Fred to tell us what its seating capacity is or we can tell Fred to
move to the dining room. Fred is an object of class table and
behaves as we would expect a table object to behave.

How does this relate to Visual PRO/5™ (or PRO/5)? We are used to
Business Basic programs that perform utilitarian functions. A
standard input routine is one example of such a program. Or a date
validation routine. The date validation routine is very similar to a
method that a date object might possess. We might ask the date
object if it contained a valid date, getting back a TRUE or FALSE
answer. The date.valid method would be a function method. We
could also ask a date object to update itself to the next month
(useful in generating statements or checks). This would be a
procedural method.

Most people feel object-oriented
programming cannot be implemented in
traditional Business Basic because the
language lacks encapsulation.
Encapsulation refers to a programming
language's interface to objects-it's the
wall that keeps the programmer from
tinkering with the object's innards.
Languages, such as PRO/5 and Visual
PRO/5 that do not support encapsulation
expose your data region and methods to
anyone who know how to write code.

There is a way to make your objects
more remote, however: implement
object managers. An object manager is a
program, function, or subroutine that
looks and feels like an object interface.

The program is not an object but is the interface to the object. Let's
say we want to create and use a class called Account. This class
defines objects that contain 24 data segments called "10-digit dollar
amounts," a data segment called "name," and a data segment
called "description." The class might use the following methods:
create, destroy, load, clear, total, and store.

The create and destroy methods are used to initialize and remove
the objects. The object manager can be used to create as many
objects as required. The objects must be persistent from invocation
to invocation, and uniquely named. The two most efficient means of
implementing uniquely named, persistent objects in Business Basic
is to store them in the global string table or in files. Disk accesses
are slower than memory accesses so an object manager that is
expected to handle only a few objects at a time may work best with
the global string table.

Although it would be inefficient to use a called program to access a
disk file one record at a time, let us assume that the load method
somehow tells the object to retrieve data from some location and
the store method causes the reverse operation to occur. An object
manager implemented as a subroutine would be the best choice for
managing objects that work with files. To work with the object
manager, we require at least two parameter variables: Method$ and
Parameters$. If the object manager is implemented as a function,
only two parameters are required. If it is implemented as a
subroutine or called program a third parameter variable, Result$, is
required.

Let's say we store general ledger data in a file named GLACCTS. We
wish to use these records in an object metaphor to simplify our
coding efforts, so we have developed an object manager to handle
the Account class. To create an object, we'll use the account code
as the unique identifier. Thus, to create an object we invoke the
manager with the create method.

Called program:
Method$="create"
Parameter$=GLACCT.ACCOUNT_CODE$
call"accounts.bbx",Method$,Parameter$,Result$

Multiline function:
Method$="create"
Parameter$=GLACCT.ACCOUNT_CODE$
Result$=FNAccounts$(Method$,Parameter$)

Subroutine:
Method$="create"
Parameter$=GLACCT.ACCOUNT_CODE$
gosub Accounts

Eventually we'll have to assign multiple parameters to an object
manager, but the Parameter$ variable can handle this easily. We
can implement our own terminators, such as commas, and have the
object manager parse them. Although this may seem inefficient, it's
easier to maintain object management logic across hundreds of
programs if you don't have to change them all every time a new
parameter or method is added to a class. Each method can then
take responsibility for ensuring it receives the parameters it
requires, including type checking if necessary.

	basis.com
	BASIS International, Ltd. - Yes Virginia, There Are Objects In PRO/5 - Summer 1997 - The BASIS Advantage Magazine

