
By Scott Amspoker

One look at the first BB1 created by MAI
reveals that Business Basic has come very far
from its early roots. In those days (the 1970s),
Business Basic performed the demanding role
of host operating system as well as
programming language. When BASIS was
formed in 1985, Business Basic took another
radical step, which we know as BBx. BBx
dropped the role of host operating system and
focused on being a cross-platform
programming environment that ran under
another host operating system.

The evolution continued. Business Basic users learned to expect
certain kinds of enhancements from one release to the next.
Likewise, Business Basic providers learned to play along-adding
mostly minor language enhancements-new verbs, functions, and
mnemonics. This "feature hacking" became synonymous with
progress. Business Basic remained a monolithic environment: the
interpreter, development tools, and file system were an inseparable
package. It created its own little world for the programmer to
enjoy, while ignoring much of what was happening outside its
address space. This problem has been addressed in minor, yet
useful, ways by allowing pipes to other processes or simple DLL
calls.

Today's real world demands more hybrid solutions. How can the
"closed" Business Basic system act as one component of a larger
integrated solution? A Business Basic compiler might do the trick.
Well, a compiler for Business Basic might be an interesting novelty,
but only useful to some. You would give up the convenience of
dynamic interpretation without gaining the power of a large, full-
featured compiled language. (For a more in-depth discussion of
multi-tier development, please see "Pinatubo: A More Open
Business Basic".)

So, Business Basic developers are having to make tough decisions.
It appears that their only choices are to stay with Business Basic or
leave it. Well, let's not be so hasty. There is some good news.
Interpreters are IN again.

One of the hottest language tools today is Java. Java programs are
typically translated into a machine-independent byte code and
executed by a Java Virtual Machine (JVM) interpreter. Sound
familiar? Java also borrows bits and pieces from other languages,
such as C/C++, that are practical to implement in a dynamic
interpreted environment.

When working with Java, you have two primary options. You can
create a stand-alone Java application or a Java "applet" which can
only run embedded in an "applet viewer" such as a web browser.
Could the monolithic BBx language ever be used as a simple
runtime engine? Actually...yes!

http://www.basis.com/index.html
http://www.basis.com/advantage/index.html
http://www.basis.com/advantage/mag-v1n2/index.html
http://www.basis.com/advantage/mag-v1n2/bbxgoesonline.html
http://www.basis.com/advantage/mag-v1n2/index.html
http://www.basis.com/advantage/mag-v1n2/vp5totaos.html
http://www.basis.com/advantage/mag-v1n2/pinatubo.html
http://www.basis.com/advantage/mag-v1n2/pinatubo.html
http://www.basis.com/advantage/mag-v1n2/pinatubo.html
http://www.basis.com/advantage/mag-v1n2/pinatubo.html

Pinatubo - The New BBx Engine

At our April dealer conference in Nashville, I showed BASIS's new
Business Basic engine. This technology is part of a release code-
named Pinatubo. Pinatubo represents the first time since the first
BBx release that our language interpreter has been completely re-
written from scratch. We've learned a lot over the years and many
of our future enhancements simply would not be possible without a
re-design.The internal token structure is re-designed for faster
performance as well as supporting many new language features.
Don't panic: existing PRO/5 programs will load into the Pinatubo
engine just fine.

Rather than a giant executable, conference attendees saw a lean-
and-mean Business Basic engine implemented as an opaque C++
object. The purpose of the BB engine is to interpret Pinatubo's
machine-independent byte code. The engine does not require any
particular file system, GUI manager, or front end. Such services are
hooked into the engine at runtime as necessary by the larger
application. The BB engine can be embedded directly into a C++
application, wrapped up as a Component Object Model (COM)
object, used within an event handler, or placed anywhere a
developer wishes to use it.

This engine will sit at the core of our next-generation Business Basic
products as well as appear in non-traditional places. Not only will
this technology enable Basis to respond much faster to changes in
the industry, it will allow our developers to create their own
solutions as well.

BBx code will be executed without a lot of fuss. The traditional
"workspace" concept will all but disappear. Code and data will be
dynamically managed. A larger application can invoke entire BBx
programs or throw in snippets of BBx code for instant execution.
Not only can a C++ program directly invoke BBx code within the
same process but BBx code can directly invoke the host C++ code.
Multiple threads? No problem. And BBx developers will be able to
perform various single-stepping modes, set breakpoints, set variable
watches, examine the call stack, and do many other interactive
debugging operations. This is possible because the new Business
Basic engine supports multiple operating modes to assist in the
development/debugging process.

Business Basic Syntax - Modernize the Classic

As long as the shiny new BB engine was being unveiled, we decided
to seriously revamp the BBx language as well. Although we didn't
show every enhancement, we did give conference attendees a
sneak peek at some of the more down-to-earth features.

The biggest attention grabber was the option to work without those
annoying line numbers. The Pinatubo interpreter supports two
syntax modes-"line mode" and "free mode". In free mode, line
numbers are no longer a part of the program. They're not hidden-
they're simply not there any more. Internally, the only difference

between the two modes is the presence of line numbers. Programs
in either mode can peacefully coexist in an application. If the
developer wishes, a line mode program can be instantly converted
into a free mode program in the blink of an eye.

By removing the physical line as a complete syntactical unit,
Pinatubo is ready to embrace many modern language constructs.
For example,

 if a=b then
 {
 for x=1 to 10
 {
 print "hello";
 a=a+1;
 }
 }
 else
 {
 while a<c
 {
 b=b+a;
 a=a+1;
 }
 }

One important difference between line mode and free mode is how
the program is edited. In line mode, a program is edited piecemeal
by adding and removing lines. In free mode, a program is edited as
a single unit via an interactive editor (any editor will do). For
example, the Cabezon integrated development environment (IDE)
has a built-in editor. The programmer can make any number of
modifications to the program and then RUN it. Within a split second,
the program is tokenized and execution begins. If syntax errors
exist, the IDE will take the programmer directly to the offending
lines of code. (For more information on Cabezon, please see
"Cabezon, the IDE for Business Basic Developers".)

Some readers will wonder how Pinatubo will be able to resume
execution after a free mode program is modified. We recognize this
ability as an indispensable feature of BBx. Rest assured that
Pinatubo will re-synchronize with a modified free mode program and
resume execution from the point where it left off. In fact, it's much
more liberal about modifying lines with active GOSUB's than
previous versions of BBx.

On a less glamorous note, we showed various small feature
enhancements in Pinatubo. Many of our customers saw these
features last year in our traveling demo tours. Here is a snippet of a
(meaningless) line mode program showing some new syntactical
touches, including enhancements to comments, variables,
assignment operators and string expressions.

0010 rem test program
0020 // Note the C++ style comment as an alternative to REM
0030 // Variable names can be up to 200 characters long
0040 aaa: print this_is_a_very_very_looooooong_variable
0050 // radix integer constants from AngelFire and C
0060 let hexval=0x7fff,octval=0o37777,binval=0b11011101
0070 // character integer constants
0080 let charval='w'+123
0090 // C-style assignment operators
0100 let a[x*y]+=4
0110 let a$+=b$
0120 let a[all] += b[all]
0130 // more liberal string and substring expressions
0140 let a$=(b$+c$)(1,10),b$=fid(1)(4,6)(x,y)

http://www.basis.com/advantage/mag-v1n2/cabezon.html
http://www.basis.com/advantage/mag-v1n2/cabezon.html
http://www.basis.com/advantage/mag-v1n2/cabezon.html

Getting more serious, we've implemented C++ style exception
handling (a la BBx, of course). For starters, individual error numbers
can be specified:

let a=abs(x,err(41,60,27)=xxx,err=yyy)

The above statement traps errors 41, 60, and 27 by branching to
label xxx. Other errors branch to label yyy. If something other than
a simple branch is desired, a block of BBx code may be used
instead:

let a=abs(x,err={ print "an error happened"; return })

In fact, the block of code for an error handler can be thousands of
lines and contain error handlers within it. By default, the error
handling code resumes at the next statement following the
statement containing the error handling code. Therefore, err={}
would be considered an "ignore" operation.

As if that wasn't enough, the global SETERR verb has some new
competition. The Pinatubo engine implements a trap block (similar
to the C++ try/catch feature).

 trap
 {
 myloop:
 read record(1)b$;
 write record(2)b$;
 goto myloop;
 } end={},err=myhandler;

In the above code, any untrapped error that occurs inside the "trap"
block will be subjected to the error branches at the end of the trap
block. Trap blocks can be nested within trap blocks. This is a much
better way of catching errors within a range of statements than
using SETERR.

Unfortunately, the limited space for this article prevents me from
covering everything we showed at the conference (much less things
we didn't show). Fortunately for BBx developers, they will soon have
a much more powerful BBx language to use. Also, their existing
code can be embedded in unimagined hybrid environments. My
advice-don't throw that old code away!

http://www.basis.com/advantage/mag-v1n2/bbxgoesonline.html
http://www.basis.com/advantage/mag-v1n2/index.html
http://www.basis.com/advantage/mag-v1n2/vp5totaos.html
http://www.basis.com/advantage/mag-v1n2/about.html
http://www.basis.com/advantage/mag-v1n2/about.html

	basis.com
	BASIS International, Ltd. - The Evolution Of BBx - Summer 1997 - The BASIS Advantage Magazine

