
B A S I S I n t e r n a t i o n a l L t d.

ou may be familiar with the earlier BASIS International Advantage article Solving the Locked Record ‘Whodunit’ about
working with locked records. The information below provides a valuable update to that article with examples and
additional tips using tools now available from version 14.20 of BBj®.

BBj provides developers with several ways to access data files using direct file access as well as SQL. When using direct
file access, developers use the OPEN, READ RECORD, and WRITE RECORD verbs. In addition, the developer can control
access to the file or even individual records in the file using LOCK and EXTRACT. While these calls are very useful and often

By Jeff Ash
Software Engineer

1

System Administration

New and Improved Locking Detection

Figure 1. Sample SetLock.bbj program that creates and locks a file

necessary, the potential arises where a program EXTRACTs a record or LOCKs a file on behalf of
a user who might get distracted or leave for lunch. As a result, other users cannot access the data
they need. This article provides some ways to resolve such circumstances and make it easier to
track down the offending user.

Locked Files
When a program makes a LOCK call on a file channel, the file is locked from access by any other
process. If a program attempts to open a locked file, the OPEN call throws an ‘error 0’ but it does
not give any indication as to who has the file locked. Knowing who has a file locked is very useful
information, especially when a file that has been locked for some time prevents other users from
accessing it. The Enterprise Manager (EM) displays the list of open files, so an administrator
can check this list, find out which user has the file locked, and force close that file if necessary.
However, sometimes it is beneficial for the program to indicate who has a file locked in its lock error
message. That way, an administrator does not need to be brought in every time there is a lock left
open on a file. The following code samples demonstrate how to easily access this information from
within a BBj program.

Run the SetLock.bbj program in Figure 1 to create a sample file and lock that file.

 Y

http://documentation.basis.com/advantage/v10-2006/lockedrecord.pdf

B A S I S I n t e r n a t i o n a l L t d.2

System Administration

After running SetLock.bbj, log in to the
EM and locate the “Open Files” node under
“File System” in EM’s navigator. Note the file
appears in the list in Figure 2, and indicates
the user who has the file locked.

At this point, an administrator could force
close this file to free up the lock. However,
an alternative is to throw a new error with a
more complete error message indicating who
has the file locked as well as their hostname.
While SetLock.bbj is still sitting at a ready
prompt, execute the EncounterLock.bbj
program in Figure 3.

Running the code in Figure 3 returns the
more detailed error message shown in
Figure 4 that indicates who has the file
locked and their machine name.

Extracted Records In Files
When a program executes an EXTRACT
call, it locks a single record in the file and
prevents other processes from updating that
particular record. If the program is using
advisory locking, other processes can read
an extracted record, but still cannot update
that record. As with locked files, it would be
very nice for a program to indicate who has a
particular record extracted (locked) in a file.
Reporting this information is more difficult
and time consuming than locating a locked
file because when a program encounters
an extracted record, the only information it
has immediately is called a ‘lock byte’. This
value is simply an integer indicating the
portion of the file that is currently extracted.
By itself, this information is not very useful.
However, using the lock byte value in EM,
an administrator can locate the open file
instance that contains a matching lock byte
value in the “Extracted” column. Run the
SetExtract.bbj program in Figure 5 that
simulates extracting 100 different records on
a file at a given point in time.

Figure 4. The more detailed error resulting from the code in Figure 3

Figure 5. The SetExtract.bbj program that simulated extracting 100 records

Figure 2. The Open Files list showing a locked file

Figure 3. A sample EncounterLock.bbj program that returns a more detailed error message

B A S I S I n t e r n a t i o n a l L t d. 3

System Administration

Figure 6. Large number of open file channels

Figure 7. The EncounterExtract.bbj code that returns complete information about the locked record

Download the examples at links.basis.com/lockextractcode

Knowing the lock byte value of
the extracted record (acquired by
getting the TCB(10) value after an
error 0 occurs), an administrator
can manually use the EM to locate
the entry in the open files list
that has that matching lock byte
value in the “Extracted” column.
However, this could be an arduous
task if there is a large number of
open file channels on a particular
file as shown in Figure 6.

Admin API to the Rescue
Using the Admin API, a program
can locate the information about
the open file channel that has the
particular extracted record of
interest. The EncounterExtract.
bbj program shown in Figure 7
demonstrates how to throw a new
error that includes the user and
host for the open file channel with
the extracted record using the
lock byte value, resulting in the
message that appears in Figure 8.

Summary
Discovering who has a file locked
or a particular record extracted is
no longer a complicated process
requiring an administrator. Using
some simple methods available
in the Admin API, developers can
extend the application to provide
more informative error messages,
making it possible for users to
potentially resolve lock issues
without involving an administrator.
Grab the latest version of BBj and
improve your users’ experience
today!

Figure 8. The more detailed error message resulting from running EncounterExtract.bbj

http://links.basis.com/lockextractcode

