
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 101

 B

Language/Interpreter

Richard Stollar
Software Developer

Wash up With SOAP Web Services
Now with rich data structures and authentication
Wash up With SOAP Web Services
Now with rich data structures and authentication

Let’s suppose that we want to publish a web
service that deals with customers, but the
customer record is rather complex, and the
main customer record has sub records for the
address and the contacts. Figure 1 shows how
this might look.

In our structure, Address and Contact are
complex subtypes, and there could be many
contacts records per customer. Okay, so maybe
it’s not that complex but it does serve to illustrate
the point.

BBj® web services received a facelift, which allows you to build web services that handle more complex data structures as
well as collections of records. This article presents a brief tutorial on how to create a SOAP web service that uses custom
Java types in the parameter set to extend your web service offerings. We have also added Basic authentication access and
will show you how to use it. At the end of this article you will find an URL where you can download the examples.

An Overview on Enhanced Data
You can design a typical BBj web service to have parameters of the standard BBj data types BBjString, BBjNumber, and BBjInt,
but you may require a greater variety of types. Enhancements to BBj 14.11 now make it possible to create a web service that uses
Java types on the parameter list, providing a richer web service capability.

Customer		 Address		 Contact
BBjInt	 ID 		 BBjString	 Street	 BBjString	 First Name

BBjString	 Name	 BBjString	 City		 BBjString	 Last Name

Address	 Address	 BBjString	 Zip Code	 BBjString	 Job Title

BBjVector	 Contacts	 BBjString	 State	 BBjString	 Phone

						 BBjString	 Email

Figure 1. Record structure for Customers

To achieve our goals of having a web service that can deal with this data structure,
we’re going to have to complete several steps.

 1. Create the main web service BBj application.

 2. Configure the web service in Enterprise Manager.

 3. Create a set of JavaBeans that represent the data structure.

 4. Configure a classpath for the Java classes.

Additionally, we’re probably going to need to do the following:

 5. Create utility methods for filling the Java data structures.

http://links.basis.com/14toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc102

Language/Interpreter

Before we get into all of that, let’s look at how the web services work to understand why we need to do this.

BBj Web Service Classes and Deployment
BBj web services rely on wsgen, which comes with Java. The wsgen tool parses the web service implementation class and
generates the required files for web service deployment.

For wsgen to function, it needs to have access to the required Java classes through a classpath that’s used during
execution.

You have two real options for how to provide wsgen with the classes needed.

	 Option 1: Create a .jar file that contains the classes.

	 Option 2: Add the folder where the classes were generated in the classpath.

For many reasons, including the fact that a .jar file is far more portable that a whole bunch of class files, Option 1 is the
preferred method when dealing with deployment. However, during the development phase, Option 2 is easier as you don’t
need to recreate the .jar file whenever the code changes.

So, you’ll have a project in Eclipse that holds the Java source files and the corresponding class files will be generated into
a bin folder, and this is what we’re interested in. For example, C:\Work\Examples\JavaBeans\bin\, but it may vary for you
based on the location of your project’s bin folder.

Crossing the Bridge from BBj to Java Web Service
When you develop your web service in BBj, there’s a certain amount of magic that goes on behind the scenes. Your BBj
program, however simple or complex, needs to be wrapped up with a Java implementation. Through Enterprise Manager,
you specify the prototypes for your web service’s methods. These prototypes are used to generate a Java web service for
your BBj code. That front-end web service is sent to wsgen; as mentioned earlier in this article, to generate all the classes.
Finally, the web service is deployable.

Creating the Main Web Service
Writing the web service’s code is beyond the scope of this article and much depends on your requirements. In general
terms, it is a BBj program with one or more entry points that each perform some part of the web service’s functionality.

Figure 2 shows a small piece of BBj code for a getCustomer() method in a web service.

This sample creates a customer record with static data, adds the
address, and creates a vector containing two contact records
which it then converts to an array using a utility class and adds to
the customer record. It completes a record with fixed data whereas
your web service will most likely be database driven.

Configure the Web Service
Configuring the web service is done through Enterprise Manager
as normal, at least up until the point where you need to specify the
parameters for your service methods. Rather than selecting the
type from the dropdown list you can enter the fully qualified name

Figure 2. Sample web service code

http://links.basis.com/14toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 103

Language/Interpreter

Figure 3. Specifying a custom class

Creating the Java Classes
We need to create a set of JavaBeans that represent our data structure. A JavaBean is a special type of class that encapsulates
many objects into a single object (the bean) and, unless your classes conform to the JavaBeans specification, you won’t be able to
use them in your web service.

Again, I don’t want to go too deep into explaining how you should go about creating JavaBeans as the downloadable example
should give you all you need. It’s beyond the scope of this article to cover how you should write the JavaBeans for the data, just
remember that the classes must be serializable, have a zero-argument constructor, and allow access to properties using accessor
(getter and setter) methods; this makes them a bean. Figure 4 shows sample BBj code for the Customer record.

of your class as the parameter type. In our example the fully qualified class name is com.acme.beans.Customer.
Figure 3 shows this in action.

http://links.basis.com/14toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

Dealing With Collections
Our Customer record has many Contact records. From BBj’s perspective, these contacts are held in a BBjVector but when you
want to fill the Java object with the contents of the BBjVector, you’ll need to transform the data into an array of objects of the
specific class. Enter the need for a utility class I mentioned earlier that will handle this.

Using a utility class on the Java side can be a valuable tool as you can create all sorts of standard methods for converting data.
When you have a collection of objects you’ll probably need to have a suitable converter similar to the one shown in Figure 6 which
transforms an array of objects into an array of Contact objects.

Figure 6. Converting an array of objects into an array of Contact objects

Your BBj program will use this method to convert the BBjVector into an array of Contact objects as follows:

 customer!.setContacts(Util.makeContactArray(vect!.toArray()))

Add Basic Authentication
Authenticating clients to a web service can be a rather involved process but thankfully doesn’t have to be. If you use the
HTTPS protocol for deploying your web services then Basic authentication (introduced for preview in 14.12) should be

104

Language/Interpreter

Setting Up the Classpath
You can choose to add a .jar file to your classpath through Enterprise Manager. To do this:
 1. Pick BBj Services > Java Settings from the left menu.
 2. Select the ‘Classpath’ tab.
 3. Click the [+] icon above the ‘Classpath Names’ list.
 4. Enter a meaningful name for the classpath entry; I chose service.
 5. Click [OK] to save it.
 6. Ensure that your newly created classpath entry is selected and then click the [Add a Jar] icon above the ‘Classpath 		
 Entries’ list (to the right).
 7. Locate the jar file and select it with a double-click or by selecting it and clicking [Open].

Finally you need to add the same entries to the <default> bbj classpath entry and here’s how:
 8. Select the <default> classpath entry in the list of classpath names.
 9. Click the [Add a Jar] icon above the ‘Classpath Entries’ list, locate the jar file and select it as before.

Alternatively, you can manually add the classes folder to your classpath in your bbj.properties file. It’s important to remember
that all classpath entries must begin with basis.classpath. Here is an example of what it should look like:
 	 basis.classpath.service=C\:\\Work\\Examples\\JavaBeans\\bin

Adding the Classpath to the Context
BBj 14.11 introduced contexts for the deployment of your applications, which is outside of the scope of this article but there is more
information in this issue’s Don't Put All of Your Jetty Eggs in One Context.

Figure 5. Adding the classpath to the context

You’ll need to decide the context to which we’re deploying our web service
and add the appropriate classpath element to its configuration in jetty.xml.
For now, let’s deploy our web service to the main bbj root context and add
the classpath element to the context entry shown in Figure 5.

Adding the classpath to the context is important as the web service
generation will fail without it because this classpath entry is passed to wsgen.

Figure 7. Example authentication routine

sufficient and it is widely used. The username and password are encoded in
the HTTP request header and then validated server-side.

Applying validation to your web service requires you to write a custom routine
in your web service implementation which has three parameters. The input
parameters are username, password and a response to indicate if validation
was successful or not. Figure 7 shows a simple implementation, but in a real
world you might be validating the user through a database or some other source.

http://links.basis.com/14toc
http://links.basis.com/14jetty

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

Configuring the client application is beyond the scope of this article, but most SOAP test tools provide ways to supply credentials
for Basic authentication.

Remember that Basic authentication sends the username and password in a non encrypted form. It is by itself very insecure, but
becomes secure when used in conjunction with the HTTPS protocol.

Summary
As you have read, creating more complex web services is much easier as you can now take advantage of rich SOAP web services
to send and receive complex data structures as well as collections of records. Your web services will be easily accessible to a
range of client technologies and conform to well-known standards.

105

Language/Interpreter

• Read Don’t Put All of Your Jetty Eggs in One Context

• Download and run the code samples

Figure 8. Setting the authentication in Enterprise Manager

The final step in this process is to configure the authentication routine through Enterprise Manager. Simply enter the name of your
authentication routine in your web service’s ‘Authentication’ field as shown in Figure 8. In this example, that would be myAuth.
Finally, deploy your web service and away you go!

http://links.basis.com/14toc
http://links.basis.com/14code
http://www.basis.com/14code
http://links.basis.com/14jetty
http://www.basis.com/

