
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

ou finally finished writing your BBj® application, and it’s time to put it out in front of your end users. Or maybe it’s not –
how do you know when software really is ready for public consumption? The answer may be “When the scheduled
release date arrives,” or “When the boss says it’s time,” or maybe even “When we’ve put it through its paces and there
are no more significant bugs to fix.” Sure, we all know that any good software development life cycle includes time for

testing, starting with unit testing and ending with some form of system or acceptance testing. But how much time and money
can you afford to invest in testing? How do you use your limited testing dollars to get the most bang for your buck?

Common sense says that the earlier you find a bug the easier and cheaper it is to fix it, and our experience at BASIS
supports this conclusion. But this is only helpful if you don’t have to spend large amounts of money or time in order to find
those bugs early. So what you need is a relatively cheap tool to help you find bugs in your BBj code as early as possible.
How about finding bugs as a code change creates them?

62

Development Tools

Test for Success With BBj Unit Test

By Jerry Karasz
Software Architect

Sebastian Adams
Software Developer

While you are creating a new BBj application, wouldn’t it be nice if you could just
push a button and find out what works and what doesn’t? What would you give to
have a series of tests that you can run any time, over and over, quickly turning out
a clear and concise report of which passed and which failed? Unit testing offers an
opportunity for just such a return on even a small investment. But unit tests are not
free – somebody has to write every one of them. The return comes once you have
written your unit tests. You can run them over and over again, not only to find bugs
as you are developing your code, but even afterwards to find out that you broke
something in your code with that latest bug fix.

Unfortunately, unit testing has never before been an option for BBj developers – until
now. BASIS is proud to announce the first step in providing a BBj Unit Test framework
that you can use to develop and run unit tests for your BBj code – the BBj Unit Test
Eclipse plug-in. For those of you familiar with CppUnit, JUnit, or any of the other xUnit
frameworks, you will see a lot that you are familiar with here.

 Y

http://links.basis.com/14toc
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/XUnit

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

What Exactly is a Unit Test?
In BBj Unit Test, unit test is a method on a class that returns nothing (it has a void return type) and announces its success or
failure through the special Assert methods it calls (more on the Assert methods later). In order for the BBj Unit Test framework to
recognize your method as an official “unit test” and be able to run it, your method also needs to be flagged as a unit test method by
making the line of code immediately preceding the method declaration an annotation remark, REM @Test (case insensitive). For an
example of a simple unit test method, see Figure 2.

63

Development Tools

Preparing for Unit Testing
Although this plug-in is still in its
infancy, it does provide the basis for
a good unit testing strategy. Let’s
look at where to get it and how to
use it.

Getting the Plug-in
To install the BBj Unit Test plug-in
into Eclipse, set Eclipse to use
links.basis.com/bbutils as an
available software site. Whenever
you check for software updates after
that, Eclipse will offer to download a
newer version when one is available.

Creating Unit Test Code
Suppose you have a BBj
project named MathProj that
contains a BBj code file named
MathOperations.bbj as shown
in Figure 1.

MathOperations is a simplistic class
and offers just enough methods
to be useful but not enough to
complicate this example. It has
methods defined to do multiplication,
addition, subtraction, and division.
But does it do them correctly? To
find out, let’s set up some unit tests.

Figure 1. A ‘BBj Project’ that contains a simple mathematics class

Figure 2. An example unit test method

Where do I put my Unit Test Code?
Unit test methods such as addTest() must be part of a
unit test class. We could create a class directly in the
MathOperations.bbj file to hold all of our unit test methods,
but once MathOperations and our tests get large, this will
become harder to manage, and running our tests in Eclipse
will conflict with running the regular .bbj file. Besides, it is
considered poor programming style. For these reasons, the
BBj Unit Test plug-in requires test classes to be in a separate
file in the same BBj project with a specific extension: .bbjt. We also recommend you name the test class and file something intuitive
so that the relationship between the file being tested and the unit test file is obvious. For our example, let’s name our unit test class
TestMathOperations and our unit test file TestMathOperations.bbjt, and put TestMathOperations.bbjt in the same MathProj
project (see how this looks in the BDT Navigator view shown in Figure 1). Starting the unit test class name and filename with
“Test” is a convention that we recommend, but it is not required.

How do I Structure my Unit Test Class?
In this example, we will probably need an instance of the
MathOperations class in every unit test method we write,
because that is what we are testing. We could allocate
a MathOperations variable in every unit test method, but
that seems redundant and a lot of work. We could put in a
field that is accessible to every unit test method such as
field private MathOperations mathOperations!,
and then our class would look something like Figure 3.

Figure 3. A partial BBj Unit Test class, TestMathOperations

http://links.basis.com/14toc
http://links.basis.com/bbutils

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

The @BeforeClass is the right place for any initialization including preparing globals like STBL values, opening file channels,
or any other preparation your tests require.

But what if we have setup code that needs to be executed before each unit test is run? Try @Before. Or cleanup code that
needs to be executed after each unit test is run? Try @After. It turns out that a need for “setup” and “cleanup” code is pretty
common, so BBj Unit Test offers you two different times to run setup and cleanup. Figure 5 lists the recognized annotation
remarks and their purposes, which includes both setup and cleanup options.

Figure 5. Annotation remarks for unit testing

How do I Determine Success or Failure in my Unit Test?
But how do we actually determine success or failure in each @Test method? Currently, BBj Unit Test offers a number of
methods to determine this (see Figure 6).

					
		

Figure 6. Success and failure methods

With the exception of the Expect() method, all of the methods listed in Figure 6 also offer a second method signature that is
identical to the one shown but that takes a BBjString errorMessage$ as the first argument. The errorMessage$ allows you
to specify a particular failure message to report if the invocation fails.

64

Development Tools

But that won’t work ‒ we need a way to initialize field mathOperations!
to an instance before we can use it, and that needs to be done exactly
once before we start running our tests.

If we just had some way to run some code before we executed any
of our unit tests. BBj Unit Test gives us just that ‒ the ability to define a
“setup” method that it calls exactly once before any of our unit tests run
using the @BeforeClass annotation remark. We can add a method to
TestMathOperations that will do exactly that. Our new method named
setup() is shown in Figure 4. Figure 4. Setup done exactly once before any of our unit tests run

Annotation		 Purpose

@BeforeClass		 Run this method once before running any @Before or @Test methods (class setup)

@Before			 Run this method immediately before running each @Test method (method setup)

@Test			 Run this method as an actual unit test

@After			 Run this method immediately after running each @Testmethod (method cleanup)

@AfterClass		 Run this method once after running all @After and @Test methods (class cleanup)

@Ignore			 Do not run this method as a unit test (it shows as ignored in the test results)

Method							 Explanation

Assert.Equals(BBjNumber A, BBjNumber B)			 Successful if the number A equals the number B; fails otherwise

Assert.Equals(BBjNumber A, BBjNumber B, BBjNumber Delta) Successful if the number A equals the number B within +/- Delta; fails otherwise

Assert.Equals(BBjString A$, BBjString B$)		 Successful if the string A$ equals the string B$; fails otherwise

Assert.Equals(Object A!, Object B!)			 Successful if the reference to object A! equals the reference to object B!; fails otherwise

Assert.NotEquals(BBjNumber A, BBjNumber B)		 Successful if the number A does not equal the number B; fails otherwise

Assert.NotEquals(BBjNumber A, BBjNumber B,BBjNumber Delta) Successful if the number A does not equal the number B within +/- Delta; fails otherwise

Assert.NotEquals(BBjString A$, BBjString B$)	 	 Successful if the string A$ does not equal the string B$; fails otherwise

Assert.IsNull(Object obj!)				 Successful if the object obj! is null; fails otherwise

Assert.IsNotNull(Object obj!)				 Successful if the object obj! is not null; fails otherwise

Assert.Fail()						 Always fails

Assert.Expect(BBjNumber exceptionA, BBjNumber exceptionB) Successful if the exception number exceptionA thrown equals the exception number 	
							 exceptionB; fails otherwise

http://links.basis.com/14toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 65

Development Tools

For the sake of simplicity, we will focus on the two
simplest functions:
 Assert.Equals(BBjNumber, BBjNumber),
 and
 Assert.Expect(BBjNumber, BBjNumber).

Assert.Equals(#mathOperations!.add(8,8),16)
shows how to test the MathOperations.add()
operation when we know the BBjNumber value we
will get if the code is successful. In this case, we
know that if we add 8 to 8 we will get 16, and our unit
test will report success. If, however, MathOperations.
add() returns any value other than 16, the unit test
will fail.

Assert.Expect(#mathOperations!.div(20,0),93)
shows how to test the MathOperations.div()
operation under a condition when we expect it to
throw a particular exception (93 in our example).
In this case, we know what should happen if we try
to divide any number by 0. The code should throw
an exception 93, and our unit test should report
success (because we got the expected exception).
If, however, MathOperations.div() returns any
value without throwing an exception 93 or throws
any exception other than 93, the unit test will fail
(because we expected an exception 93 but did not
get it).

Putting All of the Pieces Together
Let’s go ahead and define a full @Test method
for each of MathOperations’ methods: addTest(),
multTest(), subTest(), and divTest(). Our unit test
class now looks something like Figure 7.

You are not limited to testing only class operations
like mathOperations!.div(). You can also invoke
legacy functions like CALL as shown in Figure 8. Figure 7. A complete example BBj Unit Test class, TestMathOperations

Figure 8. An example of testing legacy code

http://links.basis.com/14toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

Running Unit Tests
Now that we have defined our tests, it’s time to run them. There are a number of ways to do this, but to keep it simple
we’ll run our tests from inside of the editor window. With the TestMathOperations class open in a code editor window,
right-click anywhere in the code and select Run As > BBj Unit Test. Our tests all run, and the BBj Unit Test View appears as
shown in Figure 9.

Figure 9. The results of successfully running TestMathOperations’ unit tests

If we wrote all of the TestMathOperations unit test code correctly, and we wrote all of the MathOperations methods
correctly, then BBj Unit Test reports success and we get the nice green result display shown in Figure 9.

If, however, we made any coding errors in any of our unit test methods, we get a red result display with an ‘Execution Error’.
The view provides additional information to help us fix our mistake: the name of the offending unit test method, the line in
that method that failed, and the matching error message as shown in Figure 10.

Figure 10. Execution errors in our unit test methods

If we wrote all of the TestMathOperations unit test code correctly but one MathOperations method works incorrectly, then
BBj Unit Test will report a failure for that test and we get a red result display. This error will show as an ‘Assertion Error’
indicating the name of the offending unit test, the assertion in that method that failed, and an error message to help us see
what went wrong as shown in Figure 11.

Figure 11. An assertion error in addTest()

66

Development Tools

http://links.basis.com/14toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

If we made any mistakes, we now have to fix our problems and test again, and again ... and again. Remember, the goal of
running our unit tests is to (eventually) see green, to have all of our unit tests run successfully. If we have written our unit
tests to cover all of the necessary functionality, then success will mean just that – the code we tested (the MathOperations
class) works the way we want it to. And we are ready to move on to our next coding task.

Summary
Unit testing is very valuable in determining whether or not a unit (such as a class or a function) works the way we want it to,
to tell you when you are (finally) finished. One thing you may not have realized, though, is that the set of automated tests
you just created can now be run again any time you modify your code or you prepare to release it. The industry calls this
process Regression Testing and it can help you find any side effects or problems you may have inadvertently created before
a release. The value of unit testing is not only in helping you know when you are finished developing, but it is also in helping
you after that to know that everything is still working perfectly!

The BBj Unit Test Eclipse plug-in is free to use with the BDT Eclipse plug-ins and is built to be extensible, but it is a
framework that is only in its infancy. It offers a number of useful methods to help you to unit test your programs, but there
is still a great deal more functionality that we can add if you would find it helpful. So give it a try and send us your feedback
on what you would like to see added next to BBj Unit Test. Help us to help you turn out better Business BASIC programs for
your customers.

67

Development Tools

• Try out the BBj Unit Test plug-in today by installing BBj Utilities
• Download and run the code samples

http://links.basis.com/14toc
http://en.wikipedia.org/wiki/Regression_testing
http://links.basis.com/eclipse
http://links.basis.com/14code
http://elearning.basis.com/

