
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

or a number of years, BBj® users have been able to configure triggers on data files to run a BBj program based on
the particular action performed on those files. While this is a common feature in most enterprise level database
management systems, standard BBj triggers have some limitations. The BBj program they execute runs inside the
same Java Virtual Machine (JVM) as the Filesystem Server accessing the files so that the trigger program cannot

execute on a remote installation of BBjServices or even locally in a separate JVM. Further, standard triggers must complete
execution of the BBj program before the file system operation can finish, blocking that file operation until the trigger code
returns. The new asynchronous trigger functionality allows triggers to fire asynchronously on a target as a result of data
changes to the source file system.

One good use case for asynchronous trigger jobs is to address an often requested customer wish; “I want to use replication to
keep a copy of my data on a separate machine but I want to massage the data on the way to the replicated target.” Of course
this isn’t replication because by massaging the data, you’re no longer replicating the data; you’re transforming the data! With
asynchronous triggers, you can do just that and offload the transformation process to the target machine, leaving your production
system largely unaffected.

 F

By Jeff Ash
Software Engineer

Creating an Asynchronous Trigger Job
The best way to understand asynchronous triggers is to walk through the process of creating one. Adding an asynchronous
trigger to a data file is very simple using a wizard quite similar to that used to setup replication and write auditing jobs. In fact,
asynchronous triggers are built upon the replication framework, and as such they require exclusive access to the data files.
Therefore, before attempting to create a replication job or an asynchronous trigger, you must first check the ‘Exclusive File
Access’ setting in the Environment section of the BBjServices settings within Enterprise Manager. Then, restart BBjServices
for this setting to take effect.

Figure 1. Choose the type of trigger job to create and name it

Asynchronous Triggers Modify the Copy

DBMS

19

To launch the wizard, open the list of
asynchronous trigger jobs by double-clicking the
‘Asynchronous Trigger Jobs’ node under ‘File
System’ in the Enterprise Manager navigator.
Create a new job by clicking [Add], give the
job a name, and choose whether to monitor an
entire database or a list of manually selected
files as shown in Figure 1.

http://links.basis.com/14toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

The next step is to indicate to the server
where the triggers should run, which can be
localhost, and then enter the ‘User Name’
and ‘Password’ for that server (Figure 2).

Next, configure the BBj programs to run
when a write or remove operation occurs
(see Figure 3). Anytime a write operation
occurs on a monitored file or directory, the
‘Write Program’ runs. The same is true for
removing a record from a file with respect to
the ‘Remove Program’.

Finally, configure the list of files and
directories to include in the job (Figure 4),
and optionally, the list to exclude from the job.
Use the subsequent wizard page to specify
exclusions.

Writing the Trigger Handlers
Remember the ‘Write Program’ and the
‘Remove Program’ – writehandler.bbj
and removehandler.bbj – that we specified
in Figure 3? They need to exist for the
asynchronous trigger job to work. Fortunately,
writing a trigger handler is quick and simple.
These special programs support the complete
functionality of BBx® with one limitation – they
cannot include any user interface-related
operations since the programs run inside the
server, often in a headless environment.

Figure 2. Specify the server to run the trigger programs

Figure 3. Specify the runtime details

Figure 4. Specify the files and directories to monitor

DBMS

20

http://links.basis.com/14toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

remove operations occur on a list of monitored directories and files – all without blocking the file operation. The beauty
of this new feature is that you can configure your triggers to execute the BBj code on any BBjServices server available
on the network, remote or local. Using the BBjTriggerData object available to the trigger handlers, you have all the
information necessary about the file and operation necessary to provide powerful processing. This new 15.0 feature is
available for preview today so why not install it and try it out?

• See asynchronous triggers in action on YouTube

• Refer to BBjTriggerData in the online documentation

• Download and run the code sample

Figure 5. An example program showing some of the information available to a trigger handler

Another important difference is that
BBj treats trigger handlers in a special
way, making a special object available
to the environment that provides
valuable information about the file
operation that triggered the programs
execution. Figure 5 displays a short
example showing some of the special
information available to a trigger
handler.

Summary
Asynchronous triggers provide a
seamless and efficient way to execute
specific BBj code whenever write and

DBMS

21

 l inks.basis.com/javabreak

Stimulate Your Brain!

30-minute webinars
that make a difference!

http://links.basis.com/14toc
http://links.basis.com/atia
http://links.basis.com/triggerdata
http://links.basis.com/14code
http://links.basis.com/javabreak

