
B A S I S  I n t e r n a t i o n a l  A d v a n t a g e  •  V o l u m e  1 8  •  A u t u m n  2 0 1 4 links.basis.com/14toc

he “Guiding Principle of Replication” at BASIS is to use the fewest resources necessary to continuously back up the data 
as requested by the user and remain as current as those resources will allow. Clearly, some resource use is required, but 
the impact on user operations should be as small as possible and be imperceptible to the user group. In pursuit of this goal, 
BASIS added these improvements to shrink replication resource usage:

    	   • Reduced the number of open files on both the target and the source
   	   • Optimized the copying of small files and large string files from the source to the target 

These changes greatly improved the efficiency of a replication job with large numbers of files to copy from the source to the target, 
such as when there is no initial rsync or when creating or changing a large number of string files. This article takes a closer look at 
these improvements.

Caching File Opens on the Target
The first improvement was to tighten control over the number of files open on the replication target. A replication target needs a file 
open in order to make such changes as writing or removing records. However, replication operations are a stream and encompass 
changes to potentially many files. It is much too expensive to open and close a file every time there is a file operation. After all, the 
user might be in the process of adding a million records to the same file, and opening and closing the file a million times (once for 
each record) is much too slow. 

To resolve the issue, we keep a cache of recently used files on the replication target; the first operation on the file will open it and 
subsequent operations will find it already open and ready to modify. If the file has not had any operations for a couple of minutes, 
we go ahead and close it in order to avoid having too many files open. Unfortunately, this does not help if users were modifying 
many files at the same time. If users modified a thousand files within a couple of minutes, then the replication target could open all 
thousand files at the same time, which would lead to running out of file handles. BASIS resolved this by adding a restriction on the 
total number of open files in the cache. In addition to closing files when they have not been used for a couple of minutes, the total 
number of open files is limited to prevent overwhelming the replication target with open files even if there are near simultaneous 
changes to many different files on the source.

Replication Redux

By Chris Hardekopf
Software Engineer

DBMS

52

 T

Limiting Open Files on the Source
BASIS also made changes to minimize the number and duration of open files on the 
replication source. Unlike the target, the replication source only needs to open files 
in order to check for OS-level changes and to copy files to the target. We record 
simple data file modifications directly to the replication log and send them on to the 
target without needing to open the file. However, when we detect OS-level changes 
to a file, we need to open the file to check the contents against the target and copy 
it when necessary. Originally, we would open all of the source files in order to check 
for changes and if we required a new copy of a file we would keep that file open until 

http://links.basis.com/14toc


B A S I S  I n t e r n a t i o n a l  A d v a n t a g e  •  V o l u m e  1 8  •  A u t u m n  2 0 1 4links.basis.com/14toc

For more information, refer to:
• Replication Introduction in the online documentation
• Anatomy of a Replication Job in The BASIS International Advantage

DBMS

53

the copy completed. Unfortunately, this could lead to problems. It could cause each file to remain open for an extended period of 
time, using up open file handles and preventing it from being deleted.

We changed how the copy works so that instead of keeping the file open until it was copied, we immediately close the file and add 
the name to a queue. When we are ready to actually copy the file, we attempt to open it again just for the duration of the copy. This 
means that only a few files are open at a time and the user is able to delete the file while it is waiting for the job to copy it since it 
will only be open for the minimum time necessary for the check and thereafter for the actual copy.

Copy Whole Files
Copying files from the replication source to the target is normally performed a block at a time for string files, or a record at a 
time for data files. This lets us efficiently copy large files as well as allow file modifications during the copy process. However, if 
the file is small enough, we now copy the whole file in a single operation. It is much more efficient to simply load the entire file 
into memory and send it to the target. This process avoids extra communication between the source and target about the file, 
minimizing the amount of time the file is open on the replication source. However, copying large files in this manner would take 
too much time and use too much memory and network bandwidth in loading the entire file into memory and sending it to the 
target.

Add Checksums to Minimize Traffic
Occasionally, a user will put a large string file into a replication job, requiring the replication source to copy the file to the 
target. If the file does not exist on the target, the job must copy the entire file. However, sometimes the large file already 
exists on the target and users are only modifying the source file in relatively small ways. For example, when users append to 
log files and only change the end of the file. 

In order to handle such cases better, BASIS changed large string file replication to get checksums for blocks of the file that 
already exist on the target and only copy the parts of the file that have different checksums or that do not already exist on 
the target. Now, instead of just copying the file from scratch as it used to, the replication target iterates through the target file 
gathering a list of checksums that it can send back to the replication source. The replication source then iterates through the 
source file it is copying, comparing the checksums in order to determine which parts of the file have actually changed. The 
replication job only needs to send the changed parts of the file over the network to the replication target. This process requires 
that the replication target read the target file, and the replication source still needs to read the entire source file, but it has the 
potential to greatly reduce network traffic and speed up the file copy for minor changes (such as appending) to large string files.

Summary – Faster, More Robust, More Efficient
At BASIS, our belief in the concept of continuous improvement made these recent changes to replication an easy target, utilizing 
the feedback from the community and our own research helped us make the process as efficient and unobtrusive as possible. 
We look forward to finding more ways to improve the performance and reduce resource usage into the future.

Sit back and enjoy a 
30-minute presentation 

with BASIS!
    l inks.basis.com/javabreak

http://links.basis.com/javabreak
http://documentation.basis.com/BASISHelp/WebHelp/dbms/replication_intro.htm
http://documentation.basis.com/advantage/v15-2011/11replication.pdf
http://links.basis.com/14toc

