
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

ollowing the release of the Dashboard Utility in BBj® 14.0, BASIS introduced this utility in a few Java Breaks and published
several live demos on the BUI Showcase page. To recap, this article covers some of the Dashboard Utility’s more prominent
features and capabilities, and provides images and screenshots to give you a better feel for all it has to offer.

Dashboards – A Blast From the Past
At BASIS TechCon in 2007, we presented a GUIBuilder-built demonstration program called DigitalDashboard. BBjCharts were new
to the language at the time, and the program’s purpose was to illustrate how to utilize those charts to show the Chile Company’s
sales team’s performance.

Fast forward several years to the release of BBj 14.0 that now comes bundled with the Dashboard Utility. The underlying
technology of the Dashboard Utility is the same as that of the BBjChart methods, but the differences are like night and day.

 • BBjCharts are independent, low-level controls that you add to your BBj program and manage with your code.

 • The Dashboard Utility is an advanced framework built upon the foundation of a Dashboard Widget, which includes multiple
 types of charts and also supports grids, reports, images, and HTML.

 • The utility provides built-in widget management so that it will take care of categorizing, sizing, positioning, hiding or showing,
 and even refreshing your widgets for you.

After comparing the original TechCon demo with a couple of BUI dashboard apps running in iPads shown in Figure 1, the old slogan
 “You’ve come a long way, baby!” comes to mind.

8

Building Blocks

 F

Dash Boredom With
the Dashboard Utility

Figure 1. The 2007 Digital Dashboard demo (left) compared to the contemporary dashboard BUI apps running on iPads (right)

By Nick Decker
Engineering
Supervisor

Why Dashboards are so Effective
The core concept of a dashboard is to take
complicated information and present it in a simple
visual format. This makes the data significantly
easier to understand, allowing you to grasp
several performance metrics at a glance. Charts

http://links.basis.com/javabreak
http://links.basis.com/buidemos
http://documentation.basis.com/BASISHelp/WebHelp/bbutil2/dashboard.htm
http://documentation.basis.com/BASISHelp/WebHelp/gridctrl2/bbjchart.htm
http://links.basis.com/14toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 9

Building Blocks

are particularly effective, as they exploit our ability to correlate visually spatial locations and distances, sizes, and colors. These fuse
together and leave us with a distinct notion of data relationships in a way that is immediately obvious – something rows and columns
of numbers often cannot do. In so doing, owners and executives are empowered to make faster and more informed decisions to
make their businesses better. Figure 2 shows three different dashboard chart widgets that demonstrate data correlation.

The pie chart shown on the left gives a clear relationship of the relative amounts a business spends on product costs based on
the size of the pie slice. The line chart shown in the center visually indicates the increasing number of online users as the years
go by. The slopes of the lines in the chart also convey each of their relative growth rates. The stacked bar chart shown on the right
provides several points of interest. The length of the bars and the ordering of the sales reps make it simple to discern their relative
performance over the past year. Looking more closely at each sales rep’s bar also presents us with a breakdown of their yearly
sales by product. In each one of these cases, our dashboard charts effectively present complex trend, cost, and sales information
in a readily consumable format.

The Dashboard Utility’s Goals
When BASIS engineers devised the Dashboard Utility, two leading tenets guided the design philosophy.

 1. Developers should be able to get a dashboard with widgets running without a lot of code.
 2. Widgets should be customizable, but they ought to look good by default.

How well did we do on each of those? As a testament to the former, our Adding the New Digital Dashboard to Your App Java Break
video not only introduces the utility, but gives a complete walk-through of the dashboard creation process. During the video, we
show the code we used to create a dashboard with a grid, bar, and pie chart that all report on different facets of sales data that was
exported from a spreadsheet. The YouTube page (links.basis.com/youtube) includes a link to the final source code that is just over
30 lines, not counting the REM and empty lines that exist to aid in legibility.

The resultant dashboard shown in Figure 3 confirms that we succeeded in our first goal. In just over a couple dozen lines of code,
we have a fully functional dashboard up and running.

Figure 2. Dashboard widgets demonstrating data correlation in pie, line, and stacked bar charts

Figure 3. The dashboard program built during the Java Break

What do we mean by ‘fully functional’? When you resize the window, the widgets will automatically resize and reposition themselves to
maximize their use of the available window space. You can also reposition the widgets, hide and show them, pop them out to view a
larger version; save out an image of the chart, email it to a colleague; refresh the widget to reflect the latest data, and more.

For our second goal, we modified dozens of chart parameters so that the default widgets look terrific without any extra work on your
part. To see the difference, it’s worth taking another look at the comparison of charts shown in Figure 1. The charts in the Dashboard

https://www.youtube.com/watch?v=bzoAYvZfw9Q&list=UUx-CWRhGmqrKbIbW9U-HHsA
http://links.basis.com/youtube
http://links.basis.com/14toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc10

Building Blocks

Figure 4. A pie chart widget embedded in an AppBuilder-generated application

Figure 5. Examples of different categories in the AddonSoftware Dashboard

Figure 6. Dragging a widget to reposition it in the dashboard

Utility are brighter, cleaner, and have improved fonts and colors that produce a more aesthetic and professional result. You
still have access to scads of chart methods that offer greater control over several components including data colors and font
family/size/color, but those are added enhancements instead of necessary intricacy.

The Dashboard Utility’s Features
The Dashboard Utility is split between two BBj object-oriented programs that together offer over 750 methods, so it’s safe to
say that the Dashboard Utility is a fairly advanced library. The list of features and capabilities is not only extensive, but has
been steadily growing over the last several months since its introduction. Rather than providing an exhaustive list of every
option and available method, let us take a whirlwind tour of several of the Dashboard Utility’s more prominent features.

Dashboard Features
 • Dashboard Modes. You can run a
 full-featured dashboard as a stand-
 alone program in a top-level window,
 or create it inside a BBj control to
 embed in your application as shown
 in Figure 4. That same flexibility
 applies to dashboard categories (tabs)
 and widgets as well. This makes it
 possible for you to embed any portion
 of a dashboard into a new or existing
 BBj program, or run them in a stand-
 alone fashion.

 • Dashboard Categories. You can create
 multiple categories for a dashboard
 such as shown in Figure 5. The
 dashboard displays these categories
 in separate tabs, making it easy to
 provide multiple dashboard widgets
 without overcrowding the window or
 overwhelming the user.

 • Widget Size. The dashboard resizes
 and repositions its widgets automatically
 in response to resizing the dashboard
 window or the browser window running
 in BUI. You can influence the size of the
 widgets by setting a minimum and
 maximum width, and you can also set
 the column and row spacing. This is
 done on a per-category basis, and
 makes it possible to have larger
 widgets for displaying reports and
 smaller widgets for displaying data
 grids. You can also modify the widget’s
 size and spacing to target particular
 screen resolutions when running on a
 mobile device.

 • Widget Placement. You can
 reorganize widgets in a dashboard
 category by simply dragging a widget
 via its title bar (see Figure 6) and
 dropping it into the desired position.
 The dashboard rearranges the other
 widgets automatically to make room for
 the newly positioned widget. The
 dashboard stores the position for each
 widget in a cookie so after you arrange
 the widgets, it will remember their order
 and display them in the same position
 the next time you run the dashboard.

http://links.basis.com/14toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 11

Building Blocks

Figure 7. A sample widget’s toolbar with controls on the right side

Figure 8. A JasperViewerWidget displaying a report in a dashboard widget

Figure 9. Manually refreshing the widget from the toolbar menu

 • Widget Control. Dashboard widgets all have a toolbar on the top of the widget, as shown in Figure 7, that allows you to
 ‘pop out’ the widget, configure the widget, or close the widget. Closing a widget in the dashboard hides it so that it no
 longer appears in the dashboard. You can click on the dashboard’s [Customize] button to see the full list of available
 widgets for the current dashboard category, along with a screenshot and brief description of each widget. The ‘Customize’
 window makes it easy to add a hidden widget back to the dashboard. The dashboard also stores the visible/hidden state
 of the widgets in a cookie, so if you hide a widget then the dashboard will hide it the next time you run the program as well.

Widget Features
 • Widget Types. The dashboard supports several different types of widgets, allowing you to display data in a
 variety of different formats. Charts are commonly used in dashboards, but you may also display grids, images,
 web pages/other HTML content, and even full-featured reports via BBJasper as shown in Figure 8. Various chart
 types are supported as well, including bar charts, stacked bar charts, line charts, area charts, stacked area
 charts, pie charts, ring charts, and more.

 • Widget Data. You can create many dashboard widgets with an SQL connect string and query to automatically build a
 dataset and populate the widget. When you create a widget in this manner, it is automatically refreshable and will
 respond to a refresh event by requerying the database and updating the widget with the latest information.

 • Widget Refresh. You can configure refreshable dashboard widgets programmatically to refresh themselves
 automatically, and users may accomplish the same via the widget’s configuration menu (Figure 9). The widget will
 then update itself with new data whenever the specified refresh interval time has elapsed. You can configure the
 interval by providing the desired number of seconds, minutes, or hours that must elapse before the widget
 refreshes itself. The dashboard stores the automatic/manual refresh configuration in a cookie, so when you set a
 widget to refresh itself automatically it will continue to do so the next time you run the dashboard.

http://links.basis.com/14toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc12

Building Blocks

Figure 11. A chart widget with custom colors and CSS

Figure 12. The dashboard on a normal display (left) and a high density display (right) that has quadruple the resolution and increased sharpness

Figure 10. Accessing a widget’s filter to select the accounts on which to report

 • Widget Filters and Links. Dashboards
 widgets also support optional filters and
 links. Filters are displayed as dropdown
 lists at the top of the widget and allow the
 end user to modify the contents of the
 widget. A common use case for filters is
 to modify the underlying data query so that
 you can select values like ‘Domestic’,
 ‘Overseas’, etc. to change the reporting
 range for the widget (see Figure 10). Links
 are located on the bottom of the widget and
 provide an easy way to open up a web page
 or run a BBj program of your choice.

Utility Features
 • CSS Customizability. The dashboard and
 widgets offer dozens of CSS selectors so
 you have complete control over the look
 and feel of your dashboard running in BUI.
 For example, a dashboard category will
 have the general dashboardCategoryWindow
 selector as well as a selector based off of
 the name you gave the category such as
 dashboardCategorySalesReports. This way
 you can style all of the categories and
 widgets at once or style each one
 individually with a different appearance.
 See the example of custom colors and CSS
 in Figure 11.

 • High Pixel Density Display. The dashboard program and the widgets it creates take advantage of high pixel density
 displays when available, such as on Apple Retina devices. The fonts, charts, and even the widget and button icons
 were optimized to run at full resolution with more detailed graphics on a high pixel density display – both in the
 traditional thin client and in BUI. Figure 12 shows a comparison of a normal display and the high density display.

http://links.basis.com/14toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 13

Building Blocks

• Read these articles also appearing in this issue
	 • Easier Decision Making With the Dashboard Utility
	 • The Magic of the Widget Wizard

• Refer to online documentation
	 • Dashboard Utility Overview
	 • JasperViewerWidget

• Watch the Java Break Adding the New Digital Dashboard to Your App and our other YouTube videos

Summary
While BBjCharts have been available in the language for several years, building a dashboard using these charts has always
taken quite a bit of time, effort, and code. The new BASIS Dashboard Utility makes all of that a thing of the past. By providing
extensive built-in functionality and over a dozen different types of widgets, you can now get a fully functional dashboard up and
running in a couple dozen lines of code. Better yet, it handles everything from sizing and positioning widgets to automatic refresh
and save functionality. By taking advantage of all that the Dashboard Utility has to offer, you can equip your customers with the
ability to make better, faster business decisions with a powerful and enlightening view into their data, all with very little effort on
your part!

http://links.basis.com/14dasheasy
http://links.basis.com/14widget
http://documentation.basis.com/BASISHelp/WebHelp/bbutil2/dashboard.htm
http://links.basis.com/jvwidget
https://www.youtube.com/watch?v=bzoAYvZfw9Q&list=UUx-CWRhGmqrKbIbW9U-HHsA
http://links.basis.com/youtube
http://links.basis.com/14toc

