
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 43

Building Blocks

he Dashboard Utility eases BBj developers’ job in many ways, providing built-in functionality that would normally require
significant coding time and development. The utility also simplifies application development by providing a higher-level API
in addition to adding several useful niceties. This article takes an in-depth look at a few of the ways the Dashboard Utility
reduces development time and facilitates building high quality dashboards in a modest amount of code. The Dashboard

Utility delivers data in a format that will allow business owners and managers to turn decision making into child’s play!

Layout is Easier
When you create a dashboard such as the one in Figure 1 that we built in our Java Break Adding the New Digital Dashboard to
Your App, you reap the benefits of a fully functioning layout system.

Easier Decision Making With
the Dashboard Utility

 T

By Nick Decker
Engineering
Supervisor

The DashboardControl is the top-level window that contains all of the dashboard elements, already programmed to handle events
such as maximizing, minimizing, resizing, and positioning. Better yet, it saves these preferences so that the dashboard will be the
same size and in the same position the next time you run it. Whenever you change its client area, such as maximizing or resizing
the window, it internally calculates the new client area and the optimum size and placement for all of the widgets.

Figure 1. The dashboard program built during the Java Break

http://links.basis.com/14toc
http://links.basis.com/uklpt%20
http://links.basis.com/uklpt%20
http://documentation.basis.com/BASISHelp/WebHelp/utils/Dashboard/DashboardControl.html

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc44

Building Blocks

Dashboard widgets come with a
default minimum and maximum
width that the dashboard uses
when calculating the number
of rows and columns to show.
The result is that the dashboard
displays the widgets at a
calculated size that makes the
best use of the available client
area. So depending on whether
you resize the dashboard window
to be tall and narrow, or short and
wide, you may end up with two
columns of three widgets each,
or three columns of two widgets
each. This means it is even
possible to run the dashboard
on a smartphone or other mobile
device, as it resizes the window
and widgets automatically to make
the best use of the limited space.
Because you can control the
widgets’ minimum and maximum
size, along with the spacing
between the rows and columns
of widgets, you can influence
the layout and customize it for
a particular device, as shown in
Figure 2.

The dashboard also responds to
device orientation changes so you
get a different layout in portrait and
landscape mode. Figure 3 shows
the same dashboard program
running in a smartphone in
landscape orientation.

Data is Easier
One of the more striking examples of how the API streamlines development deals with populating charts with data. For example,
you would typically incorporate a BBjBarChart into an application with the following program flow:

	 1. Add the BarChart to the window via the addBarChart() method, providing several initial parameters.

	 2. Initialize data access from a file or database.

	 3. Retrieve the data in a loop.

	 4. Execute the setCategoryName() method to add a data category based on the data.

	 5. Execute the setSeriesName() method to add a data series based on the data.

	 6. Repeatedly execute the setBarValue() method to add data to the chart.

The Dashboard Utility takes over the onus of creating a window and handling its events, so instead of adding a BBjBarChart
to a window via the addBarChart() method, your code will add a BarChartWidget to a DashboardCategory via the
addBarChartDashboardWidget() method. These two methods are similar in theory and somewhat related in practice, as
they both take parameters to indicate the chart’s labels, orientation, dimensionality, etc. The difference is that you can
populate the chart automatically by providing a BBjRecordSet or a database connection string and SQL query to the
addBarChartDashboardWidget() method.

Figure 2. The effects of changing the widget size for a smartphone running in portrait mode

Figure 3. The dashboard running on a smartphone in landscape mode

http://links.basis.com/14toc
http://documentation.basis.com/BASISHelp/WebHelp/gridctrl2/bbjbarchart.htm
http://documentation.basis.com/BASISHelp/WebHelp/winmethods3/bbjwindow_addbarchart.htm
http://documentation.basis.com/BASISHelp/WebHelp/sysguimethods3/bbjbarchart_setcategoryname.htm
http://documentation.basis.com/BASISHelp/WebHelp/sysguimethods3/bbjbarchart_setseriesname.htm
http://documentation.basis.com/BASISHelp/WebHelp/sysguimethods3/bbjbarchart_setbarvalue.htm
http://devserver.basis.com/BASISHelp/WebHelp/utils/Dashboard/BarChartWidget.html
http://devserver.basis.com/BASISHelp/WebHelp/utils/Dashboard/DashboardCategory.html
http://devserver.basis.com/BASISHelp/WebHelp/utils/Dashboard/DashboardCategory.html#addBarChartDashboardWidget(BBjString,%20BBjString,%20BBjString,%20BBjString,%20BBjString,%20BBjString,%20BBjString,%20BBjNumber,%20BBjNumber,%20BBjNumber,%20BBjString,%20BBjString)

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 45

Building Blocks

The utility takes on the task of populating
the chart, saving you a lot of time, code,
and effort. Of course, you can still create
an empty BarChartWidget and populate it
with data yourself, just as you did with the
BBjBarChart. However, instead of using three
different methods to add categories, series,
and set values, you can accomplish the same
thing with a single setDataSetValue() method
call that adds the underlying categories and
series for you automatically. The bar chart
shown in Figure 4 is a perfect example, as
it was created with a connection to the Chile
Company database and an SQL query that
retrieved the top four customers ordered by
their sales thus far this year. Figure 4. A dashboard widget that was filled automatically given an SQL connection and query

Formatting Grids is Easier
Other perks are sprinkled throughout the API, and our next example deals with formatting the appearance of a GridWidget. In
many cases, you’ll want to customize the width of a grid’s columns to improve legibility by allocating more space to columns with
more data. For example, when displaying customer addresses, the City column requires more space than the State column that
only shows two-character abbreviations. To accomplish this with a typical BBjGrid control, you would make repeated calls to the
setColumnWidth() method, providing the column number and the desired width in pixels.

The dashboard’s GridWidget is flexible, and often changes size depending on the size of the dashboard itself, a minimum
or maximum widget size preference set by the developer, and whether or not you popped the widget out. Because of
the various size possibilities, setting an absolute pixel width for a column isn’t feasible. Instead you can call one of the
setColumnWidthPercentages() methods to specify the width of all of the columns at once based on a percentage of the grid’s
width. The line of code below demonstrates setting the widths of all four of a GridWidget’s columns at once using a comma-
delimited string of percentage values, although another variation of the method exists that takes a BBjVector as the parameter.
This line indicates that the first column should take up 20% of the grid’s total width, the second column should take up 35%, and
so on for a total of 100%.

The resultant grid’s columns are sized perfectly as shown in Figure 5, even when the grid is resized or popped out and enlarged.

Figure 5. The result of setting the grid’s column widths in percentages

JFreeCharts are Easier
When working with a BBjChart, you could
always get the underlying JFreeChart client
object via the getClientChart() method. This
allowed you to exercise literally thousands of
methods against the underlying chart and its
components such as its plot, renderer, legend,
and all of their components. On the plus side,
you had complete control over the resultant
chart. On the minus side, the JFreeChart
API is sufficiently deep and complex that in
practice very few developers went through
the effort to make any modifications at all.
Additionally, since the getClientChart() method
returns a client object, this means that it is not
an option in BUI and therefore is even less
likely to be used.

In direct contrast, it is relatively simple to
make dramatic and sweeping customizations
to a dashboard chart, usually in just a couple
of lines of code. For example, you can easily
customize all of the chart’s colors, either
by selecting a pre-existing color theme or
providing your own colors, in a single line of
code. Likewise, you can also change the font

http://links.basis.com/14toc
http://devserver.basis.com/BASISHelp/WebHelp/utils/Dashboard/BarChartWidget.html#setDataSetValue(BBjString,%20BBjString,%20BBjNumber)
http://devserver.basis.com/BASISHelp/WebHelp/utils/Dashboard/GridWidget.html
http://documentation.basis.com/BASISHelp/WebHelp/gridctrl2/bbjgrid_basic_methods.htm
http://documentation.basis.com/BASISHelp/WebHelp/gridmethods/bbjgrid_setcolumnwidth.htm
http://devserver.basis.com/BASISHelp/WebHelp/utils/Dashboard/GridWidget.html#setColumnWidthPercentages(BBjString)
http://www.jfree.org/jfreechart/api/javadoc/
http://documentation.basis.com/BASISHelp/WebHelp/sysguimethods3/bbjchart_getclientchart.htm

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

sizes or colors for all of the elements in a chart in a single line of code. In addition to being efficient, the high-level API relieves you
from the effort required to drill down into the JFreeChart hierarchy to affect changes. This means you can change the colors on
the chart widget itself, instead of getting the underlying chart, getting the plot from the chart, getting the renderer from the plot, and
executing the setSeriesPaint() method on the renderer to set the colors.

The dashboard shown in Figure 6 shows the result of chart customization. By taking advantage of methods on the widgets,
we were able to set custom chart colors, modify the fonts, change the background color of the legend, add a drop shadow to
the plots, and change the range axis to format the values as currency. All of this was possible in just a few lines of code on the
widgets, whereas it would have taken a significant amount of low-level code to accomplish the same task on a JFreeChart object.

Figure 6. A dashboard with customized widgets

Summary
The BASIS Dashboard Utility curtails the amount of effort required to visualize your data effectively in a single widget or complete
dashboard. Gone are the days where you would have to write database integration code in order to populate BBjCharts, as the
Utility can automatically populate and refresh widgets for you. The Utility also handles other crucial tasks, such as sizing and
positioning widgets, so your dashboard looks fantastic – even on mobile devices such as smartphones and tablets. If you have
not done so yet, take the Dashboard Utility out for a spin by visiting our BUI Showcase page and running some of the Dashboard
Demos on your favorite computing device!

 • Watch the Java Break Adding the New Digital Dashboard to Your App on YouTube

 • Refer to other articles in this issue
	 • Dash Boredom With the Dashboard Utility
	 • The Magic of the Widget Wizard

 • Visit the online Help
	 • Dashboard Utility Overview
	 • Dashboard Javadocs

46

Building Blocks

Missed an Issue?

www.basis.com/advantage

http://links.basis.com/14toc
http://www.jfree.org/jfreechart/api/javadoc/org/jfree/chart/renderer/AbstractRenderer.html#setSeriesPaint-int-java.awt.Paint-
http://links.basis.com/buidemos
http://links.basis.com/jb-adddashutility
http://links.basis.com/14dashintro
http://links.basis.com/14widget
http://links.basis.com/dashdocs
http://links.basis.com/dashjavadocs
http://www.basis.com/advantage-overview

