
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

igital dashboards provide a graphical view of business data, allowing anyone, especially owners and management
executives, to quickly and easily make better informed decisions. To capitalize on the value of visual data presentation,
the AddonSoftware® development team undertook the task of offering the value-added reseller (VAR) community a
representative, well-rounded sampling of ERP widgets that would both pique prospects’ interest as well as supply a

prototype that VARs could use for their own vertical development. To that end, AddonSoftware by Barista® version 14.0 not only
debuts a fully functional dashboard (Figure 1), but also provides a solid foundation for customization.

 D

54

Building Blocks

AddonSoftware's Digital Dashboard Takes Off

Figure 1. AddonSoftware Dashboard showing widgets in the sales category

By Christine Hawkins
Software Developer

By Carla Johnson
Software Developer

http://links.basis.com/14toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 55

Building Blocks

The AddonSoftware Dashboard includes examples of most of the new BASIS Dashboard Utility's widget types,
graphically displaying key data in an easily digestible manner. In addition, version 14.0 showcases the dashboard's
flexibility with an embedded widget (Figure 2) on the Accounts Receivable Customer form. In the AddonSoftware
tradition, all the code that makes this magic happen is available to the VAR community.

Figure 2. Customer form contains an embedded pie chart showing aged balances

This article unearths what we learned during our development cycle. Read about our design process and the
aspects of development that were both easy and challenging, and get a peek “under the hood” at the technical
details.

Getting Started
The AddonSoftware team was excited to participate in the development of the new BASIS Dashboard Utility and
have the opportunity to work closely with BBj® engineers to help shape the dashboard’s functionality and direction.
As the BBj team developed the utility, we molded the mechanics to AddonSoftware – always keeping in mind our
goal of assisting both VAR developers and resellers. AddonSoftware inherits all the functionality of the Dashboard
Utility, including the ability to pop out individual widgets for a zoomed-in view, save or email a widget image,
manage refresh options, and customize the dashboard layout.

With so much inherited functionality, we were able to focus on how to make the best use of the Dashboard Utility
within AddonSoftware and the Barista Application Framework. We started by brainstorming ideas on which widgets
to include in our initial release. To meet our goal of delivering a dashboard that is both customer-facing and a
prototype for VARs, we identified some initial requirements. Widgets needed to

 • Offer an eye-catching display

 • Provide an effective presentation of data relevant to a prospect’s business

 • Reference data that would lend itself to a graphical depiction

 • Be appropriate for the data being collected

Takes Off

http://links.basis.com/14toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc56

Building Blocks

As we considered these requirements, AddonSoftware’s General Ledger and Sales Analysis data tables came to the fore as
a "widget-rich" environment. Our design plan included a broad selection of widgets to benefit both prospects and VARs as
shown in Figure 3.

Figure 3. AddonSoftware Dashboard showing widgets in the ‘Accounting’ category

Once we defined the core set of widgets, we turned our efforts toward designing a process to launch the dashboard in
accordance with the Barista security model so the availability of widgets would tie to the user's security role. We also
considered AddonSoftware's modular structure so that the dashboard would only create widgets for installed modules.

Understanding the Dashboard Utility
Just as the AddonSoftware Dashboard has laid the foundation for VARs and resellers to demo the new dashboard and
customize or expand on it, the Dashboard Utility paved the way for the AddonSoftware team. Not only could we refer to the
Dashboard Utility Overview in the online Help to learn about the various aspects of the utility, but we also got a boost by
having a functional demo dashboard with access to the source code. And all of these resources – the online documentation,
the BBj Demo Dashboards, and the Addon Dashboard – are available to anyone developing with BBj!

We began by taking the demo dashboard for a test drive to acquaint ourselves with its function, capabilities, and available
widget styles. We analyzed the underlying code, and found that we could leverage pivotal routines – specifically, the logic
for constructing the dashboard, its categories, and its individual widgets.

The methods for constructing the various widgets and setting their properties are consistent and intuitive, so the code was
easy to understand and propagate. Furthermore, we found that because the Dashboard Utility provides defaults for colors,
fonts, etc., we could create a widget very quickly with just a few parameters. We could set and/or change many additional
properties if we chose, but didn’t need to worry about a myriad of details to get up and running.

Implementing the Dashboard in AddonSoftware
Since we could borrow the core code from the demo dashboard to get the basics for AddonSoftware's dashboard in place,
we were free to focus on the application-specific challenges. Some of these challenges were specific to widgets while others
applied to the overall design and, once solved, would be in place for the benefit of others doing dashboard development.

Look and Feel
In terms of overall design, we had to think about the general look and feel of the dashboard. While it was tempting to use
different types of widgets, colors, and fonts, and to experiment with rendering the data as a flat vs. 3D graphic, we opted to
let the utility's defaults set the theme. This decision made our job easier and also provided a more consistent look.

http://links.basis.com/14toc
http://links.basis.com/dashdocs

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 57

Building Blocks

Launch
Since we needed the ability to launch the dashboard either inside the Barista MDI or via the browser user interface (BUI), we
added code to update the progress meter in Barista's menu panel, and perform other miscellaneous initialization tasks to facilitate
a BUI launch.

Security
Barista’s security is tied to menu items; therefore to address security considerations, we created hidden menu items for each
widget (Figure 4), not just for the dashboard as a whole. This gave us the infrastructure to set Barista security options on a per-
widget basis to tailor each user's version of the dashboard to their security permissions (Figure 5). Without the granularity provided
by assigning menu items to each widget, security could only be applied at the level of the dashboard as a whole – a user could
either access all of the dashboard or none of it. Clearly, that would not have been an optimal solution.

Logic
Last, but not least, we added code to construct
widgets only if the associated AddonSoftware
application module was installed. Adding this
logic brought the AddonSoftware Dashboard
into alignment with AddonSoftware standards
for module integration.

Combining all of these design features made
the AddonSoftware Dashboard seem right at
home within the Barista framework rather than
having the appearance of an external bolt-on.
Having addressed these issues, we turned our
focus to the design of our individual widgets.

Figure 5. Barista Security Administration controls access to widgets based on user role

Figure 4. Hidden menu items for each widget
provide a link to Barista security

http://links.basis.com/14toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc58

Building Blocks

Setting Design Standards
At the widget level, we found that even though we had to revisit certain design questions with each widget, the process
became easier after the first time through, and was even faster by establishing some standards.

The first question in designing our widgets was, “Which of the many widget types would best depict the data we wanted to
display?” The answer was largely an educational step, and the team went to the Internet to learn about charting. For example,
consider the two representations of sales rep data shown in Figure 6 and Figure 7. Shown as a line chart, the individual sales
amounts for each rep display clearly. The same data shown as a stacked area chart places the reps' sales amounts atop each
other, so you also have a visual of total sales.

It is also important to understand that different widgets require different recordset structures, so we had to decide on the
widget type before we set about writing the stored procedure (SPROC). Figure 8 shows examples of the recordsets needed
for a pie chart vs. a stacked area chart.

Figure 8. Recordset for sales rep pie chart (left) and stacked area chart (right)

Since SPROCs are written with BBj code, we had the freedom to write them using either SQL or native file access. We wrote
a few selected SPROCs with both kinds of access, then REM’d out one or the other and ran traces and/or called the SPROCs
from within the Enterprise Manager to compare the performance. In general, if the desired data came from only one or two
tables and was already in a normalized form and adequately indexed, SQL worked great. Otherwise, we found we could get
our return recordset more quickly using native file access. That principle made it faster to design and code the remaining
SPROCs.

Figure 9. Filters allow users to change the widget data dynamically

Adding Filters
Another widget-specific consideration was whether
to add filters so the user would have options for
tailoring the result. For example, the Sales category
contains a widget showing the AddonSoftware
Accounts Receivable Drilldown Sales Report.
When run stand-alone from the menu, the user
establishes the month and year for the report. In
the dashboard version, the widget initially appears
based on defaults set out in the code, and the user
can then select the period of their choice from the
month/year filters (Figure 9).

Figure 6. Line chart presents individualized data for Top
Salespersons from Sales Analysis

Figure 7. Top Salesrep total sales by period in a Stacked Area Chart calls out the totals for
each period

http://links.basis.com/14toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 59

Building Blocks

Delivering our Final Product
At this point in the development, we had sailed over most of the hurdles, resulting in minimal ramp-up time for VARs wanting
to demo or modify the AddonSoftware Dashboard. By following a process similar to our undertaking, a VAR’s step into the
new world of graphical data display should be straightforward. The general process is the same as any AddonSoftware
development.

 1. Define your goal.

 2. Familiarize yourself with the user interface.

 3. Review existing code logic pertaining to your goal.

 4. Follow the examples provided when making your custom logic.

 5. Consult the BASIS Dashboard Utility documentation, as needed.

Read on for some of the more technical details of our implementation.

Dissecting the Components
As an overview, the BASIS Dashboard Utility provides the underlying widget and dashboard objects and contains a number of
components. Refer to the links at the end of this article for more information about the Dashboard Utility that is published in this
issue and the online documentation.

Barista handles framework functionality such as security, document warehousing, STBLs, sysinfo, localization, and masking.
AddonSoftware leverages these primarily via a program named adx_aondashboard.aon, a launcher program that contains all of
the logic to interface the AddonSoftware data with the BBj and Barista components. To help with customization efforts, this
program includes examples of the majority of widget types, each of which utilize calls to SPROCs to collect data. Its easy-to-
follow structure lends itself to customization.

The flow of adx_aondashboard.aon is essentially this:

 1. Initialize various processes and variables, including a check for BUI.

 2. Create the dashboard.

 3. For each category, create the category tab control.

 4. For each widget, if security allows it and the associated module is installed, create the widget.

Creating the dashboard and its categories is very straightforward – just two lines of code each. To illustrate, Figure 10 shows
the code snippets that create the dashboard itself and the accounting category.

Figure 10. The code that creates the Dashboard and the Accounting category

Initially we borrowed the code for creating individual widgets from the BASIS Demo Dashboard, altered it for AddonSoftware,
and then wrapped it in the logic to create the widget based on the user's security and whether or not the requisite module is

http://links.basis.com/14toc
http://documentation.basis.com/BASISHelp/WebHelp/bbutil2/dashboard.htm

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

installed (Figure 11). Note also that the user-facing text – the dashboard title, category names, widget titles, filter contents,
etc. – are localized to display the appropriate text for the user's locale/language.

60

Building Blocks

Figure 11. Widget construction code wrapped with tests to check security and application installation

To simplify widget creation, we developed a naming convention for widgets. We then broadened the convention to add consistency
across the various components (SPROCs, Barista menu ID's, widget names, thumbnail images, and filter selection events). Per
AddonSoftware standards, AddonSoftware Dashboard names include a two-character module ID and descriptive acronym. For
clarity, the last four characters are an underscore followed by a three-character widget-type abbreviation as shown in Figure 12.

Embedding a widget in a form like we did on the ‘AddonSoftware Customer’ form (Figure 2) uses code that is very similar to adding
a widget to the dashboard, except we used the EmbeddedWidget classes as shown in this excerpt from the ‘After Show (ASHO)’
callpoint (Figure 13).

Figure 12. Three-character widget types used
in Addon Dashboard naming conventions

Figure 13. Callpoint code in Addon's Customer form constructs an embedded pie chart widget

Comparing Figure 11 with Figure 13, you’ll notice numerous points of similarity, including the use of the getTranslation method to
localize the user-facing text in accordance with AddonSoftware’s multilingual capabilities.

http://links.basis.com/14toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

Tips on Customizing
VARs wishing to customize the AddonSoftware Dashboard already have a roadmap in place to follow. We've done the
heavy lifting so developers don’t have to! Here are some things to keep in mind if you want to build your own dashboard or
modify the standard.

	 • Customizations should pay attention to the handling of security as demonstrated in adx_aondashboard.aon.

	 • Making use of the same/similar naming conventions that AddonSoftware implemented in the standard product 	
	 will make it easy to identify/locate the various components (SPROCs, Barista menu ID's, thumbnail images, etc.).

	 • Begin by reviewing the data underlying the widget you want to create so that you can decide on the right widget 	
	 for the job and whether you'll want to use SQL or native file access to build your recordset.

	 • Don't forget that each SPROC needs to be defined in Enterprise Manager. AddonSoftware does this with
	 the adx_buildsproc.aon utility that runs with the first launch of AddonSoftware (via Barista's Auto-Launch 	
 	 mechanism). VARs can create a similar auto-launch process to make sure SPROCs are re-defined after new 	
	 installations or upgrades.

Summary
The BASIS Dashboard Utility throws the data visualization doors wide open and AddonSoftware's dashboard
implementation gives VARs not only a ready-made solution for demonstrating graphical capability in the application,
but also a great tool to use as a springboard for customization.

61

Building Blocks

• Refer to the following resources for deepening your understanding of AddonSoftware’s Digital Dashboard
 • Dash Boredom With the Dashboard Utility
 • Easier Decision Making With the Dashboard Utility
 • Dashboard Utility Overview in the online documentation

• Download and run the code samples

http://links.basis.com/14toc
http://links.basis.com/14code
http://documentation.basis.com/BASISHelp/WebHelp/bbutil2/dashboard.htm
http://links.basis.com/14dasheasy
http://links.basis.com/14dashutility
http://www.basis.com/training

