
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 47

ike all software products, AddonSoftware® by Barista® is an evolving complex system with many parts that make up the
whole. The AddonSoftware business logic is the brains that control what it does, and the BBj®/Barista framework is how it
gets that job done. With every change to either part of the system, the possibility of an error or incorrect logic entering into
the system becomes greater. A robust testing procedure that uses tools that are consistent and logical finds such defects

before they become big problems.

In traditional software testing, the developer performs the Component and Unit testing stages. Then the Quality Assurance team
does System Integration testing, which can use up a significant amount of people, time, and money executing manual tests. Using
an automated testing system is a better use of resources, exercises the software consistently, and finds defects more quickly. In
fact, when an abnormal action or error happens, it can even automatically notify the testing team of a problem!

BASIS recognized the value of such a testing procedure and selected Quality First Software's QF-Test (www.qfs.de) for automated
integration testing. QF-Test is a Java-based professional tool to automate testing of Java and Web applications with a graphical
user interface, and it helps BASIS to find bugs faster.

Testing Infrastructure
A consistent software testing methodology in a modern programming environment provides critical feedback to both the developers
and management that a quality product is being produced for the public. In a complex system like AddonSoftware by Barista, the
chance of abnormalities showing up in even a well-designed, logically thought out design become even greater. Large or small, these
defects need to be caught early in the development cycle to allow the developers time to correct them and to reduce the repair costs.

Using an automated testing framework such as QF-Test results in faster delivery of a cleaner product, a win-win for all. Customers
receive a better product and BASIS can better use resources to address issues that do make it into the field.

Of course, there is nothing like the real world data and procedures to expose issues in the software that the engineers did not
design for or anticipate. That is why BASIS includes sample databases in the downloadable BASIS Product Suite .jar file. Testing

Brian Sherman
Software Developer

 L
Putting Your Software Through its Paces

with the same set of consistent data in the databases allows BASIS to create and execute
tests that can depend on predictable data and software responses. This allows QF-Test
to execute tests on Barista and AddonSoftware designed to exercise as many of the key
functions as possible with predictable results. When the results don’t match what is expected,
the test is flagged as having an abnormality to indicate that it needs to be examined
further. Not all abnormalities are problems, some are minor but could be indicative of larger
problems. In software testing, having as many eyes as possible on the product is a good
thing. With the use of automated testing the process of finding problems before they are
issues is much faster, more thorough, and repeatable. The result is a much more solid final
product release.

http://links.basis.com/14toc
http://www.qfs.de

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

Executing Test Suites
QF-Test controls the system under test by using test scripts called Test Suites to drive the testing sequences. A Test Suite is a
collection of action steps that make up a logical sequence. Breaking up the steps into a series of Test Case steps makes it easier
to debug the testing script when an unusual action occurs during execution.

Each Test Suite consists of a series of actions: Setup (start), the Test case execution, and Cleanup (stop). Each of these actions
performs a critical role in the testing process. Setup is where QF-Test creates the test environment. Here, QF-Test sets the global
variables, starts Barista, logs in, and takes control. Next, it starts to process the action steps of the tests. As it steps through individual
tests, QF-Test checks for multiple conditions such as whether the forms and data display correctly, whether the prompts appear in
the correct order, and if they appear within a reasonable time. If any of these conditions don’t occur as expected, QF-Test stops
execution and displays an error. If the Test Suite completes without any errors flagged, QF-Test executes the Cleanup section and
shuts down the system under test.

The example shown in Figure 1 runs through the AP to GL cycle. This Test Suite tests such key Barista components as Header/
Detail Entry Grids, Document Processing (PDF and Jasper Reports), and of course the AddonSoftware business logic. It also

Figure 1. Test suites for AP to GL

tests for “under the hood” components such
as displaying information, timing of actions,
and operating system interactions such as
cursor movement and keyboard function keys.
As you can see, it logically steps through
the business logic and performs the entry of
an AP Invoice, selection and payment. With
printing the ‘Registers and Updates,’ it verifies
that the data flows through the AP module to
the GL module.

Reporting Test Results
When QF-Test encounters an abnormality
during execution of a Test Suite, it stops and
brings up the display as shown in Figure 2.
This shows a ‘Component not found’ type of
error message window. In addition, QF-Test
can automatically start its internal debugger
sub-system to assist with tracking down the
problem. This error occurred when the QF-Test
was unable to properly start and connect to
the AddonSoftware client.

Figure 2. QF-Test ‘Component not found’ error

48

http://links.basis.com/14toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

To Test or Not to Test, That was the Question
With manual testing, there is the age old trade-off of resource costs
against the quality gained. Deciding when to test was as much an art as
a skill. However, with QF-Test’s automated tests, we can run our tests as
often as we like, kicking them off as a side-effect of a successful build,
and have the results ready to view first thing the next morning. One
benefit of this that often goes overlooked is that these same tests now
work as Regression Tests. That means that we can run them on every
build, regardless of what the development team has changed, and even
detect side effects that may arise in unrelated areas of the product. In
other words, we can make sure that we didn’t break something in one
place by fixing a defect in another.

Many Happy Returns on our Investment
Automated testing is not for everyone – there can be a considerable up-
front cost in training and in developing the automated tests needed to
cover your program adequately. Nothing is free. At BASIS, it is worth it.
We do nightly automated builds and run the QF-Test tests on the result,
only requiring human intervention when the test detected a defect. We
call that “peace of mind,” and it saves us money in the end. The sooner
we detect a problem, the less expensive it is to fix, the faster we can
release our products, and the sooner our developers and testers can
move on to other important tasks.

In Figure 3, QF-test has completed the Test Suite and reported ‘0 exceptions and 0 errors’ as shown in the lower right
corner of the Test Suite results. The number of warnings shown indicates that there were items that, while not an error or
an exception, could cause problems and should be reviewed.

Figure 3. Successful Test Suite

“In particular, the testing of GUIs
is more complex than testing
conventional software, for not only
does the underlying software have
to be tested but the GUI itself must
be exercised and tested to check
for bugs in the GUI implementation.
Even when tools are used to generate
GUIs automatically, they are not bug
free, and these bugs may manifest
themselves in the generated GUI,
leading to software failures.”

Atif Memon, et al., Using a goal-driven
approach to generate test cases for GUIs
in ‘Proceeding of the 21st International
Conference on Software Engineering,’ pages
257-266, IEEE Computer Society Press, 1999

49

http://links.basis.com/14toc

