
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

Volume 18 • Autumn 2014

22 more articles at
links.basis.com/14adv

in this 110+ page issue!
 5 8 14 19 30 35

http://links.basis.com/14adv

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

BDT Tips for Less Pain and More Gain by Nick Decker
Discover these features that BASIS’ own
engineers say you ‘can’t live without’ in the
BDT Eclipse plug-in CodeEditor, enhanced
with BBj-specific capabilities. 14bdttips

Test for Success With BBj Unit Test
by Jerry Karasz and Sebastian Adams
Catch those bugs and fix them easily before
you deliver your app, using the new BBj Unit
Test Eclipse plug-in to run unit tests against
your BBj code. 14unittest

Building WindowBuilder by Jerry Karasz
See into the future WB Eclipse plug-in with
this Alpha version tool designed to help you
lay out your graphical controls easily and
quickly, matching your design. 14wb

The Enterprise Manager Boldly Goes Forward by Jeff Ash
Live long and prosper using the expanded
constellation of Enterprise Manager
capabilities that take advantage of the latest
desktop, browser, and mobile technologies.
14em

Zero Deployment With JNLP by Jeff Ash
Discover how Java Web Start allows users
to launch and run applications directly from
the Internet using just a browser, eliminating
the need for any special manual installation
on the client machines. 14jnlp

Don't Put All of Your Jetty Eggs in One Context by Richard Stollar
Take a close look at how to use the new
Jetty.xml file for better control and greater
flexibility with all of Jetty’s tasks, and pave
the way for better things to come. 14jetty

Dash Boredom With the Dashboard Utility by Nick Decker
Uncover the more prominent features and
capabilities in the new Dashboard Utility
that will add pizzazz and take the boredom
out of analyzing the data in your apps.
14dashutility

Ready, Set, Drill! by Christine Hawkins
Drill down for the instant gratification
of having data magically appear at your
fingertips when and where you need it
using new Drilldown and Query Definitions.
14drilldown

The Magic of the Widget Wizard by Brian Hipple
Abracadabra, the Widget Wizard magically
generates BBj object-oriented code to create,
manage, and display widgets on a desktop
or a variety of mobile devices. 14widget

A DAM-EDV Picture is Worth 1,000 Woods by Patrick Schnur
Answer your curiosity about “how ‘wood’ one
go about writing an app for a smartphone?” as
you read about DAM-EDV’s journey to deliver
this innovative web-based mobile solution.
14dam-edv

CarIT Integrates a ‘New Model’ With BBj by Wimco Driesse
Be inspired by this developer who tells, in his
own words, how his company fully modernized
their Microsoft technology app and their Visual
PRO/5 app by converting and integrating
them with BBj, paving the way for more future
enhancements. 14audev

Bleeding Heart Computer Security by Dan Christman and Jerry Karasz
Look out for security issues such as this one
that affect apps using an OpenSSL library, and
learn why BASIS remains vigilant about future
risks. 14heartbleed

The Anatomy of BBj by Teresa Dominguez
Observe this dissection of BBj to better
understand its components and how they
connect to each other thereby contributing to
its robust inner workings. 14bbj

Add New Grid Selections to Your Toolbox by Aaron Wantuck
Migrate to the new Enhanced Selection Model
for better user control of the grid and a more
efficient development process. 14grid

Wash up With SOAP Web Services by Richard Stollar
In this easy-to-follow tutorial, learn how to use
more complex data structures with your web
services and implement Basic authentication.
14webservices

Asynchronous Triggers Modify the Copy by Jeff Ash
Preview how to execute specific BBj code
whenever write and remove operations occur
on a list of monitored directories and files, and
monitored databases, without blocking the data
access operation. 14triggers

Replication Redux by Chris Hardekopf
Read about the many improvements to the
efficiency of your replication job, including
maintaining large numbers of files being
replicated from the source to the target.
14replication

Have it Your Way With New BDT Preferences by Kevin Hagel
Customize how you create and manage BBj
projects to your own liking using a number
of new advanced workspace preferences and
project properties. 14bdtprefs

2

DBMS

Development Tools

System Administration

Building Blocks

Partnership

Language/Interpreter

Table of Contents

50

68

78

101

19

52

38

62

81

22

75

89

95

8

14

30

5

35

http://links.basis.com/14dam-edv
http://links.basis.com/14audev
http://links.basis.com/14heartbleed
http://links.basis.com/14bbj
http://links.basis.com/14grid
http://links.basis.com/14webservices
http://links.basis.com/14triggers
http://links.basis.com/14replication
http://links.basis.com/14bdtprefs
http://links.basis.com/14bdttips
http://links.basis.com/14unittest
http://links.basis.com/14wb
http://links.basis.com/14jnlp
http://links.basis.com/14jetty
http://links.basis.com/14dashutility
http://links.basis.com/14drilldown
http://links.basis.com/14widget
http://links.basis.com/14em

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

Easier Decision Making With the Dashboard Utility by Nick Decker
Delve into how the Dashboard Utility reduces
development time and facilitates building high
quality dashboards with a modest amount of code.
14dasheasy

AddonSoftware's Digital Dashboard Takes Off
by Carla Johnson and Christine Hawkins
Follow the development team as they create
a sampling of ERP widgets to both pique
prospects’ interest and benefit VAR’s own vertical
development effort. 14dashaddon

Makeover Your Images With BBXImage by Nick Decker
Use this new utility to apply a wide assortment of
edits to your BBjImage, Java Image, server image
file, or image obtained from a URL. 14bbximage

You Captured My Screen! by Ralph Lance
Easily fulfill a number of once-difficult tasks with
only a few lines of code to capture screenshots
and BBj windows as BBjImage objects in both GUI
and BUI. 14screen

Painless Payables - Anywhere! by Kurt Williams
Save time and effort by limiting the handling of
paper, eliminating the filing of paper invoices,
and automating check signing with this new
go-anywhere feature. 14payables

Putting Your Software Through its Paces by Brian Sherman
Learn how BASIS finds bugs faster with a Java-
based professional tool that tests BBj applications
automatically with a graphical user interface.
14autotest

A New Day for AddonSoftware Partnerships by Paul Yeomans
Review the new no-membership-fee Authorized
Partner tier that combines product discounts and
free product training; an exceptional, low risk
opportunity to help Value Added Resellers expand
their businesses. 14var

On-Demand Enlightenment at the BASIS E-Learning Center
by Amer Child
Sharpen your skills with the new online, on-
demand, self-paced training portal, when and
where you like, as it fits into your schedule.
14elearning

OSAS Partner and Customer Conference by Gale Robledo
Find out how the OSAS team is moving ahead
with the latest BASIS technology and read about
the BASIS highlights of the 2014 conferences.
14roadscholar

BBj Logs Revisited by Bruce Gardner
Take a fresh look at how BBj manages the logs and
learn where to find them. 14trz

3

Columns

47

84

106

109

110

43

54

71

87

91

http://links.basis.com/14dasheasy
http://links.basis.com/14dashaddon
http://links.basis.com/14bbximage
http://links.basis.com/14screen
http://links.basis.com/14payables
http://links.basis.com/14autotest
http://links.basis.com/14var
http://links.basis.com/14elearning
http://links.basis.com/14roadscholar
http://links.basis.com/14trz

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

 • Create a mobile web app

 • Duplicate data changes in near realtime to a different database

 • Use the same tips and tricks that BASIS engineers use when editing with the BDT

 • Implement a zero-deployment infrastructure

 • Learn how others are benefiting from BASIS products and services

 • Capture application screenshots programmatically

 • Pass complex data structures to and from your Web Service

 • Restrict access to applications served up by the Jetty web server

 • Get online training on the new tools and building blocks

Discover all the new tools and learn how to better use the old ones throughout all 28 articles of the largest ever
BASIS Advantage magazine produced especially for your edification and your delight. Then, begin the fun as
you ‘create (or re-create) your masterpiece’!

4

Editor in Chief Nico Spence
nspence@basis.com

Managing Editor Susan Darling
sdarling@basis.com

Technical Editors Dr. Kevin King, Jerry Karasz
kking@basis.com, jkarasz@basis.com

Copy Editors Paul Yeomans, Sharon Waufle
pyeomans@basis.com, swaufle@basis.com

Bling-meister Nick Decker
ndecker@basis.com

Art Director, Graphics Patricia Catlett
pcatlett@basis.com

Electronic Production Amer Child
achild@basis.com

The BASIS International Advantage magazine is
published and distributed by BASIS International Ltd.

BASIS does not endorse any products mentioned in
the BASIS International Advantage other than those
products licensed from BASIS International Ltd.

The trademarks and registered trademarks
owned by BASIS International Ltd. in the
United States and other countries are listed at
www.basis.com/trademarks

All other product and brand names are trademarks
or registered trademarks of their respective companies.

Subscribe at links.basis.com/subscribe

Nico Spence
Chairman & CEO

BASIS International Ltd.
5901 Jefferson Street NE
Albuquerque, NM 87109-3432

Phone +1.505.345.5232
US & Canada 1.800.423.1394
International +1.505.338.4188
www.basis.com info@basis.com

Copyright BASIS International Ltd.

Stock photo credits: www.123rf.com

here has never been a better time to create your software application masterpiece. The BASIS ERP modules, utilities,
development tools, database management, and language components are the perfect building blocks for your next great
creation or for giving a facelift to your old masterpiece.

In this issue, we offer no less than four articles that cover various aspects of the new Digital Dashboard building block. Begin
with the overview of the new Widget Wizard development tool (page 14) that leads you through the creation of either a single
widget, a widget set, or a full dashboard of widget sets – all without writing any code – and end with the article about how the
AddonSoftware team implemented a full-featured ERP dashboard (links.basis.com/14dashaddon). Speaking of AddonSoftware,
“Ready, Set, Drill!” is another great article (page 8) that showcases Barista’s new drilldown and custom query functionality by
showing how AddonSoftware is taking advantage of these powerful new Barista features.

 T
Create Your Masterpiece

Both of these new capabilities deliver on the
Information component of the term Information
Technology, giving the user summarized or detailed
access to information via the drilldowns and presenting
information in a graphical format to better facilitate good
business decision making. And now, BASIS makes it
easy for you to infuse your existing solution with these
Business Intelligence (BI) capabilities, including on
mobile devices. Try the dashboards for yourself – go to
links.basis.com/addondash and imagine presenting your
Cash Conversion Cycle data to your executives as a
real-time chart on their mobile or desktop device!

Almost every article offers opportunity for you to leverage
new feature and function to save you time and money while
creating your masterpiece. Read on if you want to do any of
the following:

http://links.basis.com/14dashaddon
http://links.basis.com/addondash
http://www.basis.com/
http://www.basis.com/trademarks
http://links.basis.com/subscribe
http://www.123rf.com/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

Partnership

ogether with pilot customer Leobner Realgemeinschaft, one of the largest
logging companies in Austria, BASIS customer DAM-EDV has developed a
smartphone delivery note app for drivers to use whenever they transport a load
of logs from the forest to a sawmill. Let’s take a look at what this process looked

like before, and how the new app works.

Before: A Slow and Error-prone Process
Previously, the driver estimated the quality and quantity of the wood and manually
filled in a delivery note on paper, which he handed in with his load. At the sawmill,
they weighed the wood and provided their own estimate of its quality. The measuring
record taken at the sawmill is important for the logging company, because the quality
of the wood defines the price the logging company receives. The price can fluctuate
significantly, from 40 to 100 euros per solid cubic meter. The sawmill determines the
final price and eventually credits that amount to the logging company.

It could take several days until the delivery note is entered – manually, again – into
the database. The logging company would receive their money only after the wood
was processed in the sawmill. And every so often, there would be conflicting opinions
between the logging company and the sawmill as to the quality of the wood. But what if
the logging company was convinced that the wood they had delivered was worth more
than they were credited by the sawmill? How could they prove the quality after all the
logs had been turned into boards?

Now: More Convenience and a Quicker Turnover
DAM-EDV’s BUI app has profoundly changed this entire paperwork-heavy process.
Instead of filling in a delivery note by hand, the truck driver simply types the data into
his smartphone on an app running on a cloud server. The intuitive entry screen shown
in Figure 1 makes it simple for him.

 T

	 “Say ‘Cheese’!” If you are on a walk in the forest and see a truck driver taking pictures of the logs loaded on his truck
	 with his smartphone, don’t be alarmed. This man probably does not have an overly affectionate relationship with his
	 load. Rather, his snapshots serve a very tangible economic purpose.

Figure 1. The entry screen on the smartphone

A DAM-EDV Picture is Worth 1,000 Woods
A Logging App for Smartphones

By Patrick Schnur
European Marketing/PR

5

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

Partnership

Then he takes a couple of pictures
of his cargo with his smartphone’s
built-in camera (Figure 2). The
image quality with modern phones
is very good – Apple, Samsung,
and Sony have all performed well
in tests – and the app can process
up to seven photos. So when in
doubt, validating the quality of
the delivered wood with a photo
helps to substantiate the grade
the logging company claimed.
Videos are possible as well, of
course. “A 60-second video will be
a 5 MB file that takes only about
20 seconds to transmit,” explains
Werner Dam, Managing Director
of DAM-EDV. Figure 2. Driver capturing his cargo for transport using his smartphone

6

With a simple tap of his finger on the
‘send’ button, the driver transmits the
delivery note, including pictures and
video, via email to the server at
DAM-EDV. There, the email is
forwarded automatically to the freight
company and the logging company. At
the same time, the digitized delivery
note is stored in the logging company’s
database.

The simplified process has advantages
for everyone.

 • The driver can more easily forward
 his data

 • The logging company

 • Eliminates the time required to
 enter the data into their database

 • Receives credit on their account
 for the delivery much sooner

 • Can better estimate their
 financial turnover knowing at
 any given time how many trucks
 are underway with logs, and in
 what quality and quantity

Of course, this process greatly
simplifies resource and financial
planning. “Our partner’s largest
customer delivers up to 200 truck loads
a day, which means that, beforehand,
about 600 truck loads were underway
without being accounted for. Now, at
any given time he has the data he
needs to plan his financial turnover
and the deployment of his resources,”
Dam explains. “The forestry enterprise
benefits from the tracking of the driver’s
movements as well.”

Project Duration: Only Two Weeks
“We completed the web-based solution with BBj® in about 80 man-hours over the
span of about 3 months,” Dam estimates. “And the app was our first BBj project!”

The pilot customer was involved with the project team the whole time, testing new
program versions in practical tests and giving valuable feedback to make a very
stable and functional application. The user interface is pretty basic for the time
being because, as it is the first release, it was all about stable function. For the next
release though, DAM-EDV will visually enhance the application with CSS (cascading
style sheets) to improve the user interface and make it even more user friendly.

“We already have a number of other prospects, but it was important to me to have
an application that really runs smoothly, before we offer it to other customers,”
says Dam.

The developers at DAM-EDV profit directly from their experience with the BBj BUI
app since the company is planning to migrate their 10+ application packages, which
are currently running in Visual PRO/5®, to BBj.

Everyone has a Smartphone – the Hardware is Practically Free
Thanks to BUI, the app works flawlessly on any current smartphone, which virtually
everyone nowadays owns. “BUI makes the modern smartphone technology
available with just the ‘tap’ of a finger. For instance, we don’t need to learn an extra
programming language for native apps for each smartphone manufacturer. We can
also foresee adding other functions that the hardware offers. For example, we could
save the GPS code along with every photo taken, so that the truck driver could prove
where he picked up his cargo,” says Dam. “If a customer demands it, we’ll make that
available on the spot.”

But the most important thing is the fact that the hardware comes practically for free.
“Our competitors have similar solutions in the market, but they all require buying
tablets and extra software.” With DAM-EDV, the app is seamlessly included in
their application package ‘Rundholzanwendung’ (log application) as an optional
module, and the logging company doesn’t need to invest in any hardware. Every
driver can use his own device, with which he is already familiar. Training expenses
are minimized to “two minutes,” as Dam reports. “Needless to say, our customers
liked this aspect very much.” And with any changes in staff, there is also no extra
retraining effort. The new driver receives the URL and his credentials for the app,
and begins to work productively with his own smartphone almost immediately.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

Partnership

7

Easier With Assistance From BASIS
Throughout the project, DAM-EDV was in contact with the BASIS Europe team.
For example, when they discovered an issue with using the iPhone’s numeric
keyboard, the Saarbruecken team immediately forwarded it to the development
team at BASIS USA who quickly resolved the issue and released the fix in the
next BBj distribution.

In addition, Andreas Timm was available for face-to-face training and for
answering detailed questions remotely. Dam thinks it is a good idea to
commission detail projects to BASIS Europe, when it makes sense. “For
example, BASIS Professional Services designed the module for uploading
the pictures and videos from the smartphone to the server. We could have
done this ourselves because the tools are very well documented. However, an
experienced programmer from BASIS delivered that in a couple of hours, saving
us a couple of days’ work that we could use more effectively for our customers.”

Summary
DAM-EDV of Austria, together with their pilot customer Leobner Realgemeinschaft,
have developed an app for the lumber industry, dramatically streamlining
the data flow of the delivery of wood to sawmills and making the process
more efficient for all. Following the success of this app, there is already a
huge interest from other players in the very large lumber industry business in
Austria.

Werner Dam is also thinking about another version of the BUI app for other
customer industries. “For instance, building material wholesalers come to mind,
who could achieve efficiency gains with mobile applications as well. Taking our
growing experience into account, developing such a new app would be a piece
of cake for us.”

Read more about native apps, hybrid apps, and web apps in How Business Apps Go Mobile

DAM-EDV Ges.m.b.H.
in Styria, Austria, was
founded in 1988. Werner
Dam has been the
company’s managing

director since inception. Today,
the company serves 110+
customers from various industries
such as lumber, sawmills, sand,
gravel, and logistics in Austria
and neighboring countries.

Customers can choose from
a broad portfolio consisting
of standard solutions for
accounting, cost accounting,
asset accounting, and human
resources, which they can
combine with industry-specific
applications to form their own
individual IT system. All DAM-EDV
customers subscribe to BASIS’
Software Asset Management.
www.damedv.at

http://links.basis.com/13gomobile
http://www.damedv.at
http://www.basis.com/barista-overview

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

ollowing the release of the Dashboard Utility in BBj® 14.0, BASIS introduced this utility in a few Java Breaks and published
several live demos on the BUI Showcase page. To recap, this article covers some of the Dashboard Utility’s more prominent
features and capabilities, and provides images and screenshots to give you a better feel for all it has to offer.

Dashboards – A Blast From the Past
At BASIS TechCon in 2007, we presented a GUIBuilder-built demonstration program called DigitalDashboard. BBjCharts were new
to the language at the time, and the program’s purpose was to illustrate how to utilize those charts to show the Chile Company’s
sales team’s performance.

Fast forward several years to the release of BBj 14.0 that now comes bundled with the Dashboard Utility. The underlying
technology of the Dashboard Utility is the same as that of the BBjChart methods, but the differences are like night and day.

 • BBjCharts are independent, low-level controls that you add to your BBj program and manage with your code.

 • The Dashboard Utility is an advanced framework built upon the foundation of a Dashboard Widget, which includes multiple
 types of charts and also supports grids, reports, images, and HTML.

 • The utility provides built-in widget management so that it will take care of categorizing, sizing, positioning, hiding or showing,
 and even refreshing your widgets for you.

After comparing the original TechCon demo with a couple of BUI dashboard apps running in iPads shown in Figure 1, the old slogan
 “You’ve come a long way, baby!” comes to mind.

8

Building Blocks

 F

Dash Boredom With
the Dashboard Utility

Figure 1. The 2007 Digital Dashboard demo (left) compared to the contemporary dashboard BUI apps running on iPads (right)

By Nick Decker
Engineering
Supervisor

Why Dashboards are so Effective
The core concept of a dashboard is to take
complicated information and present it in a simple
visual format. This makes the data significantly
easier to understand, allowing you to grasp
several performance metrics at a glance. Charts

http://links.basis.com/javabreak
http://links.basis.com/buidemos
http://documentation.basis.com/BASISHelp/WebHelp/bbutil2/dashboard.htm
http://documentation.basis.com/BASISHelp/WebHelp/gridctrl2/bbjchart.htm

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 9

Building Blocks

are particularly effective, as they exploit our ability to correlate visually spatial locations and distances, sizes, and colors. These fuse
together and leave us with a distinct notion of data relationships in a way that is immediately obvious – something rows and columns
of numbers often cannot do. In so doing, owners and executives are empowered to make faster and more informed decisions to
make their businesses better. Figure 2 shows three different dashboard chart widgets that demonstrate data correlation.

The pie chart shown on the left gives a clear relationship of the relative amounts a business spends on product costs based on
the size of the pie slice. The line chart shown in the center visually indicates the increasing number of online users as the years
go by. The slopes of the lines in the chart also convey each of their relative growth rates. The stacked bar chart shown on the right
provides several points of interest. The length of the bars and the ordering of the sales reps make it simple to discern their relative
performance over the past year. Looking more closely at each sales rep’s bar also presents us with a breakdown of their yearly
sales by product. In each one of these cases, our dashboard charts effectively present complex trend, cost, and sales information
in a readily consumable format.

The Dashboard Utility’s Goals
When BASIS engineers devised the Dashboard Utility, two leading tenets guided the design philosophy.

 1. Developers should be able to get a dashboard with widgets running without a lot of code.
 2. Widgets should be customizable, but they ought to look good by default.

How well did we do on each of those? As a testament to the former, our Adding the New Digital Dashboard to Your App Java Break
video not only introduces the utility, but gives a complete walk-through of the dashboard creation process. During the video, we
show the code we used to create a dashboard with a grid, bar, and pie chart that all report on different facets of sales data that was
exported from a spreadsheet. The YouTube page (links.basis.com/youtube) includes a link to the final source code that is just over
30 lines, not counting the REM and empty lines that exist to aid in legibility.

The resultant dashboard shown in Figure 3 confirms that we succeeded in our first goal. In just over a couple dozen lines of code,
we have a fully functional dashboard up and running.

Figure 2. Dashboard widgets demonstrating data correlation in pie, line, and stacked bar charts

Figure 3. The dashboard program built during the Java Break

What do we mean by ‘fully functional’? When you resize the window, the widgets will automatically resize and reposition themselves to
maximize their use of the available window space. You can also reposition the widgets, hide and show them, pop them out to view a
larger version; save out an image of the chart, email it to a colleague; refresh the widget to reflect the latest data, and more.

For our second goal, we modified dozens of chart parameters so that the default widgets look terrific without any extra work on your
part. To see the difference, it’s worth taking another look at the comparison of charts shown in Figure 1. The charts in the Dashboard

https://www.youtube.com/watch?v=bzoAYvZfw9Q&list=UUx-CWRhGmqrKbIbW9U-HHsA
http://links.basis.com/youtube

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc10

Building Blocks

Figure 4. A pie chart widget embedded in an AppBuilder-generated application

Figure 5. Examples of different categories in the AddonSoftware Dashboard

Figure 6. Dragging a widget to reposition it in the dashboard

Utility are brighter, cleaner, and have improved fonts and colors that produce a more aesthetic and professional result. You
still have access to scads of chart methods that offer greater control over several components including data colors and font
family/size/color, but those are added enhancements instead of necessary intricacy.

The Dashboard Utility’s Features
The Dashboard Utility is split between two BBj object-oriented programs that together offer over 750 methods, so it’s safe to
say that the Dashboard Utility is a fairly advanced library. The list of features and capabilities is not only extensive, but has
been steadily growing over the last several months since its introduction. Rather than providing an exhaustive list of every
option and available method, let us take a whirlwind tour of several of the Dashboard Utility’s more prominent features.

Dashboard Features
 • Dashboard Modes. You can run a
 full-featured dashboard as a stand-
 alone program in a top-level window,
 or create it inside a BBj control to
 embed in your application as shown
 in Figure 4. That same flexibility
 applies to dashboard categories (tabs)
 and widgets as well. This makes it
 possible for you to embed any portion
 of a dashboard into a new or existing
 BBj program, or run them in a stand-
 alone fashion.

 • Dashboard Categories. You can create
 multiple categories for a dashboard
 such as shown in Figure 5. The
 dashboard displays these categories
 in separate tabs, making it easy to
 provide multiple dashboard widgets
 without overcrowding the window or
 overwhelming the user.

 • Widget Size. The dashboard resizes
 and repositions its widgets automatically
 in response to resizing the dashboard
 window or the browser window running
 in BUI. You can influence the size of the
 widgets by setting a minimum and
 maximum width, and you can also set
 the column and row spacing. This is
 done on a per-category basis, and
 makes it possible to have larger
 widgets for displaying reports and
 smaller widgets for displaying data
 grids. You can also modify the widget’s
 size and spacing to target particular
 screen resolutions when running on a
 mobile device.

 • Widget Placement. You can
 reorganize widgets in a dashboard
 category by simply dragging a widget
 via its title bar (see Figure 6) and
 dropping it into the desired position.
 The dashboard rearranges the other
 widgets automatically to make room for
 the newly positioned widget. The
 dashboard stores the position for each
 widget in a cookie so after you arrange
 the widgets, it will remember their order
 and display them in the same position
 the next time you run the dashboard.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 11

Building Blocks

Figure 7. A sample widget’s toolbar with controls on the right side

Figure 8. A JasperViewerWidget displaying a report in a dashboard widget

Figure 9. Manually refreshing the widget from the toolbar menu

 • Widget Control. Dashboard widgets all have a toolbar on the top of the widget, as shown in Figure 7, that allows you to
 ‘pop out’ the widget, configure the widget, or close the widget. Closing a widget in the dashboard hides it so that it no
 longer appears in the dashboard. You can click on the dashboard’s [Customize] button to see the full list of available
 widgets for the current dashboard category, along with a screenshot and brief description of each widget. The ‘Customize’
 window makes it easy to add a hidden widget back to the dashboard. The dashboard also stores the visible/hidden state
 of the widgets in a cookie, so if you hide a widget then the dashboard will hide it the next time you run the program as well.

Widget Features
 • Widget Types. The dashboard supports several different types of widgets, allowing you to display data in a
 variety of different formats. Charts are commonly used in dashboards, but you may also display grids, images,
 web pages/other HTML content, and even full-featured reports via BBJasper as shown in Figure 8. Various chart
 types are supported as well, including bar charts, stacked bar charts, line charts, area charts, stacked area
 charts, pie charts, ring charts, and more.

 • Widget Data. You can create many dashboard widgets with an SQL connect string and query to automatically build a
 dataset and populate the widget. When you create a widget in this manner, it is automatically refreshable and will
 respond to a refresh event by requerying the database and updating the widget with the latest information.

 • Widget Refresh. You can configure refreshable dashboard widgets programmatically to refresh themselves
 automatically, and users may accomplish the same via the widget’s configuration menu (Figure 9). The widget will
 then update itself with new data whenever the specified refresh interval time has elapsed. You can configure the
 interval by providing the desired number of seconds, minutes, or hours that must elapse before the widget
 refreshes itself. The dashboard stores the automatic/manual refresh configuration in a cookie, so when you set a
 widget to refresh itself automatically it will continue to do so the next time you run the dashboard.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc12

Building Blocks

Figure 11. A chart widget with custom colors and CSS

Figure 12. The dashboard on a normal display (left) and a high density display (right) that has quadruple the resolution and increased sharpness

Figure 10. Accessing a widget’s filter to select the accounts on which to report

 • Widget Filters and Links. Dashboards
 widgets also support optional filters and
 links. Filters are displayed as dropdown
 lists at the top of the widget and allow the
 end user to modify the contents of the
 widget. A common use case for filters is
 to modify the underlying data query so that
 you can select values like ‘Domestic’,
 ‘Overseas’, etc. to change the reporting
 range for the widget (see Figure 10). Links
 are located on the bottom of the widget and
 provide an easy way to open up a web page
 or run a BBj program of your choice.

Utility Features
 • CSS Customizability. The dashboard and
 widgets offer dozens of CSS selectors so
 you have complete control over the look
 and feel of your dashboard running in BUI.
 For example, a dashboard category will
 have the general dashboardCategoryWindow
 selector as well as a selector based off of
 the name you gave the category such as
 dashboardCategorySalesReports. This way
 you can style all of the categories and
 widgets at once or style each one
 individually with a different appearance.
 See the example of custom colors and CSS
 in Figure 11.

 • High Pixel Density Display. The dashboard program and the widgets it creates take advantage of high pixel density
 displays when available, such as on Apple Retina devices. The fonts, charts, and even the widget and button icons
 were optimized to run at full resolution with more detailed graphics on a high pixel density display – both in the
 traditional thin client and in BUI. Figure 12 shows a comparison of a normal display and the high density display.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 13

Building Blocks

• Read these articles also appearing in this issue
	 • Easier Decision Making With the Dashboard Utility
	 • The Magic of the Widget Wizard

• Refer to online documentation
	 • Dashboard Utility Overview
	 • JasperViewerWidget

• Watch the Java Break Adding the New Digital Dashboard to Your App and our other YouTube videos

Summary
While BBjCharts have been available in the language for several years, building a dashboard using these charts has always
taken quite a bit of time, effort, and code. The new BASIS Dashboard Utility makes all of that a thing of the past. By providing
extensive built-in functionality and over a dozen different types of widgets, you can now get a fully functional dashboard up and
running in a couple dozen lines of code. Better yet, it handles everything from sizing and positioning widgets to automatic refresh
and save functionality. By taking advantage of all that the Dashboard Utility has to offer, you can equip your customers with the
ability to make better, faster business decisions with a powerful and enlightening view into their data, all with very little effort on
your part!

http://links.basis.com/14dasheasy
http://links.basis.com/14widget
http://documentation.basis.com/BASISHelp/WebHelp/bbutil2/dashboard.htm
http://links.basis.com/jvwidget
https://www.youtube.com/watch?v=bzoAYvZfw9Q&list=UUx-CWRhGmqrKbIbW9U-HHsA
http://links.basis.com/youtube

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc14

Building Blocks

 W
ho wants to spend time they don't have searching through forms and reports trying to locate information they've been
asked to provide "yesterday," that they need to carry into that last-minute meeting, or that they need in order to make a
management decision? Applications built with the Barista® Application Framework already provide users with a powerful
set of querying tools to help them find that data and then sort, search, filter, and even export the results; now, that

functionality is dramatically enhanced.

In this modern age of “Have it your way!”, who wouldn't like instant gratification with data magically appearing at your fingertips
when and where you need it? Now, thanks to Barista enhancements for Drilldown and Query Definitions, you can create more
powerful queries than ever before, and even link queries to other queries – cascading them – or link to your own custom program!
This article gives an in-depth review of these powerful tools.

Review
Queries are an integral part of Barista applications. Click the binoculars or magnifying glass on any form, run Expresso or the
Document Management tasks, and you are using Barista queries. With the new enhancements, you can expand the querying
capabilities of your forms even further.

Drilldown Definitions have always been a handy way to launch a query from a field on a form, because a field with a drilldown
has its own toolbutton attached. But as single-table queries, they were somewhat limited in functionality compared to queries
built with the Query Definition tool. The Query Definition tool, on the other hand, has a robust feature set, including table joins,
calculated columns, column totaling, auto-refresh, etc., but it hasn't been as easy to associate a custom query with a particular
field on a form. In either case, the end result has been a ‘single tier’ query – that is, aside from the automatic hyperlinks that
Barista generates for foreign key fields, there hasn't been a way to drill deeper into data in the other columns.

Well, sharpen your drill bits, because all of that has changed!

Ready, Set, Drill!

By Christine Hawkins
Software Developer

What's New
Let's start with drilldowns. Two new fields in
Barista’s ‘Drilldown Definitions’ form take away
the limitations of the past (Figure 1). You can still
specify a simple single-table query, of course,
but now you also have the option to specify the
name of a custom query or inquiry program to
run when the user clicks that drilldown! That

Figure 1. Barista ‘Drilldown Definitions’ form with new ‘Inquiry Program’ and ‘Query ID’ fields

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 15

Building Blocks

Figure 2. ‘Drilldown Definition ID’ field added to the ‘Query Column Definitions’ form

Figure 3. ‘Balance’ drilldown on the ‘Customers’ form

gives you the best of both worlds – you can harness all the
extra features of a custom query, or even run a different
form, report, or other program, and have the convenience of
attaching the drilldown to a field so you can launch it via the
drilldown arrow.

Custom queries have also been improved with the addition
of a ‘Drilldown Definition ID’ field to the ‘Query Column
Definitions’ form shown in Figure 2. This field lets you specify
a drilldown definition for a query column, thereby creating
your own hyperlink in the query grid. The potential here is
huge, blowing away the ‘single tier’ query limitation. Think
about it. You can run a form and click the drilldown arrow next
to a field to launch a custom query, returning a new italicized
hyperlink in that custom query that in turn refers to another
drilldown definition, which may launch another custom query or
custom program, and on and on.

Drilldowns in Action
Let's move from the abstract to some actual examples
by examining some new drilldown functionality in
AddonSoftware®. The ‘Aging and Sales Summary’ tab on
the ‘Customers’ form has a drilldown on the ‘Balance’ field
(Figure 3).

Balance Drilldown
Take a look at the improved ‘Balance’ drilldown in Figure 4 and
the columns labeled A, B, and C. We replaced the single-
table drilldown of the past with a custom query that uses
calculated fields for transactions against the invoice and the
resulting balance, and sums those fields, as shown in
column A. Barista automatically joins foreign key tables
so we can see the Distribution Code and its description
in column B. The invoice number column ‘AR Inv No’
noted in column C displays the new italicized link so from
our ‘Balance’ query we can drill deeper and look at the
transaction detail for the selected invoice (Figure 5).

Figure 4. A - Custom query with calculated fields
B- Automatic joins C - New drilldown hyperlink

A

B

C

Figure 5. Custom query showing transactions against the invoice

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc16

Building Blocks

Also appearing in Figure 3 were four new drilldown arrows next to the sales figures. These drilldowns run custom queries
as well, filtering the invoices as appropriate to show invoices from the Order Processing module that are included in the
selected sales amount (Figure 6).

Figure 6. ‘YTD Sales’ drilldown pulls invoice information from the Order Processing module

Figure 7. Invoice number hyperlink in ‘Sales’ query launches the ‘Invoice History Inquiry’ form

Sales Drilldowns
As with the ‘Balance’ drilldown, the ‘Sales’ drilldowns use the new hyperlink capability on the ‘AR Inv No’ column.
Rather than launching another query, this hyperlink runs a program that launches the ‘Invoice History Inquiry’ form
shown in Figure 7, so that users can see all of the information about the invoice, print a historical invoice as shown in
Figure 8, or even add additional comments.

Another important new feature is the addition of ‘Before and After Drilldown
(BDRL/ADRL)’ callpoints in Barista. In the case of the ‘Sales’ drilldowns,
BDRL code runs when the user clicks the drilldown. If the Order Processing
module isn't installed, the user sees a friendly message saying that the
feature isn't available.

Last, but not least, Barista's ‘Create Sync File Backup’ process sees to it that
your Drilldown and Query Definitions will persist across upgrades.

Figure 8. Historical invoice preview form

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 17

Building Blocks

How it's Done
By now your mind is probably racing with all of the places in your Barista app that you'd like to use the new drilldowns. Let's
review the technical details so you can get started.

Balance Drilldown
 • Custom query AR_CUSTBAL queries the ‘AR Invoice 	
 Header’ table. The ‘AR_INV_NO’ column in this
 query carries the name of a filtering/inquiry program
 that is called as each header record is fetched
 (arf_custbal.aon in Figure 2). The filter program
 loops through the invoice detail for the current
 header record and accumulates transactions
 against the invoice. The accumulated transaction
 amount and resulting balance are placed in the
 query's calculated fields. The filtering program
 also instructs Barista to bypass any zero balance
 invoices.

 • Drilldown definition AR_CUSTBAL (Figure 1)
 contained the Query ID AR_CUSTBAL, so
 this drilldown will run the custom query
 rather than perform a simple single-table
 query.

 • In the Form Designer, the ‘Balance’ field is
 linked to the AR_CUSTBAL drilldown as
 shown in Figure 9.

 • The AR_CUSTBAL query's ‘AR_INV_NO’
 column also contained its own ‘Drilldown
 Definition ID’ (AR_CUSTBALDET, also
 shown in Figure 2). As a result, the invoice
 number column in the query grid will appear
 as an italicized hyperlink.

 • The AR_CUSTBALDET drilldown, in turn,
 runs a custom query by the same name,
 and will show the detail transactions for the
 selected invoice (Figure 10).

Figure 9. Use the Form Designer to link a field to a Drilldown Definition

Figure 10. AR_CUSTBALDET drilldown definition and corresponding query definition

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc18

Building Blocks

Sales Drilldowns
 • The mechanics of the ‘Sales’
 drilldowns are much the same as
 the ‘Balance’ drilldown. Each
 ‘Sales’ drilldown definition
 refers to a custom query, and
 the custom queries use additional
 filtering programs to select
 invoices appropriate to the time
 frame (MTD, YTD, etc.).

 • Like the ‘Balance’ drilldown, the
 queries run from the ‘Sales’
 drilldowns have a drilldown
 defined on the invoice number
 column, so it appears as an
 italicized hyperlink. Unlike the
 ‘Balance’ drilldown, however, this
 OP_HISTINV Drilldown Definition
 ID runs a custom program rather
 than another query (Figure 11).

 • The custom program in this
 case (code shown in Figure 12)
 is very small, and uses Barista's
 bam_run_prog.bbj to launch the
 ‘Invoice History Inquiry’ form.
 Note that since Barista calls the
 custom program, the enter
 statement must always be the
 same as shown in the example.

 • The ‘Before Drilldown (BDRL)’
 c allpoint code shown in Figure 13
 sees to it that the user is
 presented with a friendly
 message when they click one
 of the ‘Sales’ drilldowns if
 the Order Processing module
 isn't installed.

Summary
Barista queries are a powerful and ubiquitous component of the framework. Developers can extend that power by creating
Drilldown and Query Definitions that provide additional access to application data in a contextual fashion, beyond where
the default Barista queries can go. With these latest enhancements – Drilldowns that allow you to call a Query Definition
or a custom program, and Query Definitions that let you link individual columns to a Drilldown Definition – the Barista query
system has replaced the developer's hand drill with a turbocharged power drill, so you can drill down as deep as you like!

Figure 11. Drilldown Definition for the OP Sales query invoice column runs a custom program

Figure 12. Inquiry Program used by OPT_HISTINV drilldown to launch ‘Invoice History Inquiry’ form

Figure 13. Before Drilldown callpoint code in the Customer form shows message and disallows drilldown
if Order Processing isn't installed

• Download and run the code samples

http://links.basis.com/14code

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

or a number of years, BBj® users have been able to configure triggers on data files to run a BBj program based on
the particular action performed on those files. While this is a common feature in most enterprise level database
management systems, standard BBj triggers have some limitations. The BBj program they execute runs inside the
same Java Virtual Machine (JVM) as the Filesystem Server accessing the files so that the trigger program cannot

execute on a remote installation of BBjServices or even locally in a separate JVM. Further, standard triggers must complete
execution of the BBj program before the file system operation can finish, blocking that file operation until the trigger code
returns. The new asynchronous trigger functionality allows triggers to fire asynchronously on a target as a result of data
changes to the source file system.

One good use case for asynchronous trigger jobs is to address an often requested customer wish; “I want to use replication to
keep a copy of my data on a separate machine but I want to massage the data on the way to the replicated target.” Of course
this isn’t replication because by massaging the data, you’re no longer replicating the data; you’re transforming the data! With
asynchronous triggers, you can do just that and offload the transformation process to the target machine, leaving your production
system largely unaffected.

 F

By Jeff Ash
Software Engineer

Creating an Asynchronous Trigger Job
The best way to understand asynchronous triggers is to walk through the process of creating one. Adding an asynchronous
trigger to a data file is very simple using a wizard quite similar to that used to setup replication and write auditing jobs. In fact,
asynchronous triggers are built upon the replication framework, and as such they require exclusive access to the data files.
Therefore, before attempting to create a replication job or an asynchronous trigger, you must first check the ‘Exclusive File
Access’ setting in the Environment section of the BBjServices settings within Enterprise Manager. Then, restart BBjServices
for this setting to take effect.

Figure 1. Choose the type of trigger job to create and name it

Asynchronous Triggers Modify the Copy

DBMS

19

To launch the wizard, open the list of
asynchronous trigger jobs by double-clicking the
‘Asynchronous Trigger Jobs’ node under ‘File
System’ in the Enterprise Manager navigator.
Create a new job by clicking [Add], give the
job a name, and choose whether to monitor an
entire database or a list of manually selected
files as shown in Figure 1.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

The next step is to indicate to the server
where the triggers should run, which can be
localhost, and then enter the ‘User Name’
and ‘Password’ for that server (Figure 2).

Next, configure the BBj programs to run
when a write or remove operation occurs
(see Figure 3). Anytime a write operation
occurs on a monitored file or directory, the
‘Write Program’ runs. The same is true for
removing a record from a file with respect to
the ‘Remove Program’.

Finally, configure the list of files and
directories to include in the job (Figure 4),
and optionally, the list to exclude from the job.
Use the subsequent wizard page to specify
exclusions.

Writing the Trigger Handlers
Remember the ‘Write Program’ and the
‘Remove Program’ – writehandler.bbj
and removehandler.bbj – that we specified
in Figure 3? They need to exist for the
asynchronous trigger job to work. Fortunately,
writing a trigger handler is quick and simple.
These special programs support the complete
functionality of BBx® with one limitation – they
cannot include any user interface-related
operations since the programs run inside the
server, often in a headless environment.

Figure 2. Specify the server to run the trigger programs

Figure 3. Specify the runtime details

Figure 4. Specify the files and directories to monitor

DBMS

20

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

remove operations occur on a list of monitored directories and files – all without blocking the file operation. The beauty
of this new feature is that you can configure your triggers to execute the BBj code on any BBjServices server available
on the network, remote or local. Using the BBjTriggerData object available to the trigger handlers, you have all the
information necessary about the file and operation necessary to provide powerful processing. This new 15.0 feature is
available for preview today so why not install it and try it out?

• See asynchronous triggers in action on YouTube

• Refer to BBjTriggerData in the online documentation

• Download and run the code sample

Figure 5. An example program showing some of the information available to a trigger handler

Another important difference is that
BBj treats trigger handlers in a special
way, making a special object available
to the environment that provides
valuable information about the file
operation that triggered the programs
execution. Figure 5 displays a short
example showing some of the special
information available to a trigger
handler.

Summary
Asynchronous triggers provide a
seamless and efficient way to execute
specific BBj code whenever write and

DBMS

21

links.basis.com/javabreak

Stimulate Your Brain!

30-minute webinars
that make a difference!

http://links.basis.com/atia
http://links.basis.com/triggerdata
http://links.basis.com/14code
http://links.basis.com/javabreak

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

ike most good software
applications, the Eclipse platform
supports preferences or optional
settings that allow you to configure

how your Eclipse workspace operates
in general, as well as how your plug-ins
perform. These preferences are persisted
in your workspace between restarts.

The latest Business BASIC Development
Tools (BDT) Eclipse CodeEditor plug-
in provides a number of advanced
workspace preferences and project
properties settings. These options give you
much finer control over how you create
and manage BBj® projects, putting you in
control of your development experience.
In this article, we will explore BDT’s new
preferences in a hands-on tutorial, after
which BDT’s look and feel will meet your
own personal needs. Download the BDT
plug-in that comes with BBj 14.20 or higher
to try it out. Then, you can have your
burger and BDT “your way”!

To follow along with the rest of this
article, be sure you installed both Eclipse
and the Eclipse BDT plug-in per the
online instructions in Preparing Eclipse
for BASIS-Provided Plug-ins
(links.basis.com/preparingeclipse).

Preference settings appear listed in categories, in the left navigation pane of the
Preferences window. Like other tree structures, clicking on the triangle to the left of a
category expands it, and clicking on a subcategory displays its available items. Let’s
take a look at a few 15.0 preferences that are available in a preview release.

BDT
 BDT Dialogs
 Logging
Creation Defaults
 Source and Output File Locations
Creation Defaults/BBj Files
 Configure Project Specific Settings
 New BBj Files Extension
 Content Types
BBj Compiler Options
 Filtered Resources
Errors/Warnings
 Potential Programming Problems
Content Check Preferences
Summary

22

Development Tools

By Kevin Hagel
Software Developer

Have it Your Way
With New BDT
Preferences and
Properties

 L
Next, access the Eclipse preferences as instructed below. However you decide to
access the preferences in your Eclipse environment, we will refer to it as Preferences >
in this article.
 • On Linux and Windows, go to Windows > Preferences.. menu.
 • On Mac, go to Eclipse > Preferences... menu or press the Command key and the
 comma as shown in Figure 1.

Figure 1. Accessing Preferences on the Mac

http://links.basis.com/preparingeclipse

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 23

Development Tools

Figure 2. BDT General Settings dialog

Figure 3. New project default options

BDT
Click ‘BDT’ in the left navigation tree to display
the general setting in the ‘BDT Preferences’
dialog as shown in Figure 2.

BDT Dialogs
During your development, you may occasionally
see a dialog popup warning you that something
has (or hasn’t) happened. Many of these dialogs
include an optional checkbox ‘Don’t show this
dialog again’, which you should mark if these
dialogs become annoying or you no longer need
to see them. If, however, at some point in the
future you decide you want those dialogs displayed next time they trigger, navigate to this window and click the [Clear] button
in the ‘BDT Dialogs’ preference.

Logging
BDT writes error and informational messages to a bdt.log file (located in <your workspace directory>/.metadata/.
plugins/com.basis.bdt.eclipse.core/bdt.log). If you contact BASIS Technical Support with a problem, they may ask
you to set a particular Log Level value here so that specific information will appear in the log file, and then ask you to send the
bdt.log file to help the engineers investigate your problem. The default ‘Log Level’ is INFO and you should leave it at this
setting unless a BASIS tech support rep or engineer asks you to change it.
Creation Defaults
Expand BDT and click ‘Creation Defaults’ to display the options in Figure 3.

Source and Output File Locations
The ‘New project defaults’ preferences allow you to set how BDT creates and configures new projects; these settings will not affect
any existing projects.
 • Location for source files
 • In project folder - By default, new projects maintain your source files in the project root folder as opposed to a subfolder.
 • Under the project folder - Choose to keep your source files in a subfolder of the project root folder by clicking ‘Under the
 project folder’ and entering a name for the sub-folder.
 • Create tokenized files... - By default, BDT does not tokenize the files in your project. To have new projects’ programs compiled
 into tokenized files, check ‘Create tokenized files in the output files sub-folder’. You must also enter a name, such as tok, for
 the subfolder under the project root folder that will hold the tokenized files. Once you have done this, new BBj projects will
 create tokenized versions of their source files in a tok folder under your project root each time you build them. To skip creating
 tokenized output in new BBj projects, unmark the ‘Create tokenized files...’ checkbox.

Figure 4. Accessing project-specific settings for the BBj Files

Figure 2. BDT General Settings dialog

Creation Defaults/BBj Files
Click BDT > Creation Defaults > BBj Files in the left
navigation tree to display the New BBj file defaults.

Configure Project Specific Settings
Whenever the [Configure Project Specific
Settings...] appears in a ‘Preferences’ dialog (as
it does in the BBj Files display in Figure 4), it
means that you can override the displayed set of
preferences on a per-project basis.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc24

Development Tools

Simply click the link and select the desired
project from the list (see Figure 5).

Click [OK] to proceed to a filtered Properties
window and set any preferences that you wish
to be unique to that project (see Figure 6).

Since project specific preferences are
optional, Eclipse requires you to mark the
‘Enable project specific settings’ checkbox in
order to make changes. If you have set project
specific settings for this project before, the
box should already be marked; if not, mark
it now. Once there are any preferences that
are specific to this project, BDT creates a
.settings folder in that project’s folder, and
places all of the settings in a .prefs file there.
Normally, the .settings folder will not appear
in the BDT Navigator view because it has no
name preceding the extension (‘settings’ is
seen as an extension).

You may notice that only the preferences
that displayed when you clicked the link (in
this case, the BBj Files shown in Figure 4)
are available for you to set project specific
preferences. In fact, that is why the title of the
window includes the text ‘(Filtered)’.

To view or set all of the project specific
settings at one time, close all of the
‘Preferences’ windows and return to the
‘BDT Navigator’ or ‘Navigator’ view. Right-
click the project you want to view and select
‘Properties’ in the menu that appears. This
properties display is unfiltered (notice there
is no text ‘(Filtered)’ in the window title) and
allows you to view or edit all of the project-
specific preferences, even those that are not
part of BDT (as shown in Figure 7).
If you checked out the Project Properties
display, navigate back to Preferences > BDT >
Creation Defaults > BBj Files.

New BBj Files Extension
The file extension dropdown (see Figure 8)
allows you to set the default file extension for
new BBj files that you create. For information
on creating new files, refer to the “Create a
program source file in the project” section in
Creating Your First BBj Project at
links.basis.com/creatingbbjproj.

Figure 5. Selecting the project to configure

Figure 6. Filtered project-specific BBj File options

Figure 7. Project properties offering all project-specific preferences

Figure 8. The list of recognized BBj source file extensions

http://links.basis.com/creatingbbjproj

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 25

Development Tools

Figure 9. The files or extensions associated with the BBj Content Type

Figure 10. Associating a new extension with a BBj content type

To choose an extension other than the
default .bbj, click on your preferred
selection in the dropdown list or simply
type in another extension. If you type in
a new extension, you must also register
the extension as a BBj content type (see
below).

Content Types
In order for BDT to recognize files with
your new extension as BBj source files,
you must register the extension as a ‘BDT
Content Type’. Click the Content Types
link to jump to the Preferences > General
> Appearance > Content Types display.
The dialog displays a ‘Content types’
navigation tree; Select Text > BBj Content
Type in that tree as shown in Figure 9.

Click [Add...] to open a new dialog
(Figure 10).

Type in a file extension such as
 *.ext

Click [OK] and verify that your new
extension now appears in the list of ‘File
Associations’ for the ‘BBj Content Type’.
Your new extension is now registered as
a BBj source file extension, and BDT’s
CodeEditor will now support editing,
debugging, and running files with that
extension as BBj programs.

To continue on, navigate to Preferences >
BDT > Compiler.

BBj Compiler Options
Click on [Output Folders] at the bottom
of the display to expand it as shown in
Figure 11.

Figure 11. Filtering the files that will be copied to your Output Folder

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc26

Development Tools

Filtered Resources
BDT will not copy files that match these naming patterns into your output folder during a tokenized project build. By default this list
includes files such as *.bdtPath, *.buildpath, and *.classpath - files which BDT and Java create for project configuration but which
have no use in your output environment. You can add as many naming patterns as you like, separated by commas, using the
asterisk (*) as a wildcard symbol.

To continue, navigate to Preferences > BDT > Compiler > Errors / Warnings.

Errors/Warnings
The next set of preferences we will investigate relates to warnings that may be generated when you compile a BBj program (see
Figure 12).

Figure 12. Notifications for potential programming problems

Figure 13. Password Protected import warning in the ‘Problems View’

Potential Programming Problems
By default, BDT ignores a number
of low priority programming issues
when it detects them in a BBj
program. If you would like instead
to receive a warning notification
in the Problems view when BDT
encounters one of these issues,
select ‘Warning’ in the dropdown
list for that issue.

As an example, if you attempt to
import a BBj library class that exists
in a SAVEP form into the library,
BDT will refuse. If you change the
‘Import password protected’ severity
level from ‘Ignore’ to ‘Warning’, the
next time you compile you will see
something like Figure 13 in your
Problems view in Eclipse.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 27

Development Tools

BDT is only concerned with BBj source files,
tokenized files, SAVEP files, BBj data files,
and so on. We call these ‘BBj-interesting’
files. Among other things, BBj-interesting
files always copy into the output folder during
tokenized builds.

Examine the ‘Exclusion Naming Patterns’ list
in the ‘Content Check Preferences’ display
shown in Figure 14.

One way to stop BDT from opening files to
validate their content is to add their name
to an exclusion list of naming patterns: for
example, *.txt, *.xml, *.htm*. Files in the
exclusion list of naming patterns are always
treated as non-BBj-interesting, so BDT will
not even send them to Tika for content type
detection. The naming patterns supported in
the exclusion list follow file search wildcard
rules you may be familiar with when searching
for files on your operating system.

Exclusion isn’t the only interesting thing here.
There is also a contrasting ‘Inclusion Naming
Patterns’ list. So why have both? Let’s say
that *.txt is in the exclusion list, but you have
files in your project with the .txt file extension
that actually are BBj source files. If they follow
a specific naming pattern, say for example
MyFile_*.txt, you can add that to the
inclusion patterns list and still see those files
as BBj-interesting while excluding all other
*.txt files.

Figure 14. Exclusion Naming Patterns in Content Check Preferences

You will see similar warnings if you change the other severity levels to Warning. BASIS considers it a ‘Best Practice’ to always
declare your variables before using them and set the ‘Undeclared variable’ severity level to ‘Warning’.

To continue, navigate to Preferences > BDT > Content Check.

Content Check Preferences
What is Content Check? It’s a time saving practice that lets BDT handle your files correctly by displaying them with an
appropriate content icon, parsing them for code completion information, and so on. But when are content checks done and how?

Whenever events such as a project build begins, a project first opens, or when indexing occurs, Eclipse will ask BDT, “Is this
a source file?” Some workspace events cause Eclipse to send every file in the project to the BDT source file validator. If BBj
demands that every file have a fixed extension that correctly reflects its content, we would always be able to tell what is in a file
just by looking at its file extension. But, since we can’t always tell what is in a BBj file by looking at the file extension, BDT uses
Apache Tika to determine each file’s content type. For Tika to determine a file’s content type, it must open the file and look for
‘magic bytes’ and other header information which might be present there. Although individual files can be opened and closed
fairly quickly, when your project has hundreds or thousands of files it may take a significant amount of time to content check all
of your files.

http://tika.apache.org/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc28

Development Tools

Figure 15. Workspace before adding an entry to the inclusion list

Figure 15 is a screenshot of a MyFile_1.txt file in an editor window before adding this naming pattern to the
inclusion list:

Notice in the BDT Navigator’s tree control that MyFile_1.txt has a text file icon. Also, notice that Eclipse opened the text
editor to edit the file (the icon on the ‘Editor’ tab is a text file icon, and there is no syntax coloring in the text). Back in the
Preferences > BDT > Content Check display, click on the [Add] button next to the ‘Inclusion Naming Patterns’ area shown
in Figure 14. Enter the value MyFile_*.txt, and click [OK]. Examine the file MyFile_1.txt in the ‘BDT Navigator’ and
notice that it now shows a BBj content type icon. MyFile_1.txt now appears as BBj-interesting, as a BBj source file.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

Summary
The BDT Eclipse CodeEditor plug-in is a very powerful and configurable
tool. We have covered a number of BDT preferences in this article, but
there are still quite a few that we just couldn’t fit in. Please check out the
online documentation for more information. If you are already familiar
with Eclipse’s Java Development Tools (JDT), you will find that much of
BDT is already familiar to you. Either way, BDT preferences can make
you much more productive, and you can make it work, look, and feel
‘your way’!

Close the text editor window in MyFile_1.txt, and double-click on MyFile_1.txtin the BDT Navigator. This opens a
new editor window. Notice that now the BBj editor opens the file in a BBj code editor, not the text editor (the icon on
the tab is a BBj file icon, and there is now syntax coloring in the text) as shown in Figure 16.

29

Development Tools

Figure 16. MyFile_1.txt being edited with a BBj Content Check inclusion preference set

• For instructions on installing Eclipse and the BDT plug-in, refer to
 Preparing Eclipse for BASIS-Provided Plug-ins in the online Help

• Read BDT Tips for Less Pain and More Gain in this issue

• Review Creating Your First BBj Project

• Visit Apache Tika

http://tika.apache.org/
http://links.basis.com/creatingbbjproj
http://links.basis.com/14bdttips
http://links.basis.com/preparingeclipse

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

Why Widget Wizard?
So why do you need to use the Widget Wizard? After all, it only takes a limited number of lines of code to
create a widget, widget set, or a widget dashboard as shown in Figure 1. There can be a number of reasons.
 • You may have only seen how widgets work in BASIS products, demos, or Advantage articles, but
 not have any personal experience with writing code.
 • You might not be sure where to begin and all you want is to see a good example.
 • Maybe you just want to create widgets and add them to your own application without writing any
 code at all.
 • Perhaps you want to see the differences between the widget, widget set, and widget dashboard
 using your own application data.
 • You may not be familiar with the BBj OO code necessary to create and maintain widgets. The
 generated code can be inspected and manipulated until you achieve the desired knowledge and
 behavior.
 • You might be wondering which widget would best display your application data.
 • Even though you know your data, you may not be sure what SQL or recordset information is
 necessary to fill the widget with data, and you want to try out a few options.

Using the Widget Wizard to learn, to experiment with the various option combinations, or to accelerate
your development will save time that translates into less development cost. In no more than eight
simple steps, the Widget Wizard asks all the right questions necessary to create your widgets. Let’s
walk through an example.

Choosing What to Build
In Step 1 of the Widget Wizard, select what you want the Wizard to build. The choices are a ‘Widget’, ‘Widget Set’, or ‘Widget
Dashboard’ as shown in Figure 1. Each choice shows an image of how it might look when you are finished.

n BBj® 15.0 and higher, you have the ability to create widgets – one widget, a widget set, or a widget dashboard. But what
is a widget? Not to be confused with a “whatchamacallit” or a “thingamabob,” a widget is a small window that graphically
displays some aspect of your data. You define the data it will display and set an optional refresh rate to make its display
dynamic. So how do you create widgets without writing any code? Use magic – the new Widget Wizard!

The Widget Wizard is a BASIS development tool that generates BBj object-oriented (OO) code to create, manage, and display
widgets. This easy-to-use WYSIWYG utility allows you to specify the attributes and data used to generate Javadoc-commented
source code. It generates the code needed to create a dashboard of widgets or to embed your widgets in controls or windows,
and to run them in a browser or in a thin client without needing to write a single line of code. This allows you to use your widgets
on a desktop or a variety of mobile devices. The Widget Wizard not only stores the code it generates for you, it also displays the
few lines of code to cut and paste into your own program that are necessary to invoke the generated code. Because the Widget
Wizard is a BBj program, it runs on all supported BBj platforms and can be run in GUI or BUI (browser user interface) mode.

30

Building Blocks

 I

Figure 1. Widget creation choices

Widget

 Widget set

Widget dashboard

The Magic of the Widget Wizard

By Brian Hipple
Quality Assurance
Supervisor

http://links.basis.com/dashdocs

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 31

Building Blocks

Figure 2. The Sales category in the AddonSoftware Digital Dashboard

The simplest of the types is the ‘Widget’ that creates a single widget. For example, you may want to show information for a
particular customer or account in a single pie chart. To create and display multiple widgets, choose a ‘Widget Set’. This type is
useful for displaying multiple charts or widgets depicting a graphical representation of datasets’ key to the business in a single
window. Lastly, the Widget Dashboard creates and displays multiple widget sets organized by category. A category is simply a
logical grouping of widget sets that a tab control visually manages. AddonSoftware® by Barista® uses a widget dashboard called
the “Digital Dashboard” (Figure 2) to create and display widgets in Accounting, Sales, and Manufacturing categories.

Figure 3. Select the container for the item to build

Selecting a Widget Container
Step 2, shown in Figure 3, offers a
choice of housing the widgets in either a
window or a control.

Again, images provide a visual
indication of what the build item might
look like when selecting the associated
option. The ‘Window’ option creates
a BBjTopLevelWindow that is shown
to the user in modal fashion. Program
control will not return to the calling
application until the window is closed
by the user. The ‘Control’ option creates
a BBjChildWindow that will embed the
widgets into an existing BBjWindow. This
option provides the caller with control
over visibility of the widgets and the
application program flow.

Choosing a Widget Type
There are thirteen (yes, thirteen!) different
types of widgets that the Widget Wizard
can create. The widget type can range

http://documentation.basis.com/BASISHelp/WebHelp/gridctrl/bbjtoplevelwindow.htm
http://documentation.basis.com/BASISHelp/WebHelp/gridctrl/bbjchildwindow.htm
http://documentation.basis.com/BASISHelp/WebHelp/gridctrl/bbjwindow_methods_bbj.htm

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

Building Blocks

from a basic chart such as area, bar, line, pie, or ring charts, to more advanced chart types such as stacked area, stacked bar,
stacked percentage bar, or XY charts. The Widget Wizard also includes a ‘Jasper Viewer’ widget for displaying JasperReports,
an ‘Image’ widget for images, and an ‘Html View’ widget for displaying HTML. You can even put a ‘Grid’ in your widget. Icons in
the ‘Widget Type’ control provide a visual representation of each widget type. See Figure 4.

Obtaining Data
The most time consuming part of widget creation is figuring out what data is needed for the selected widget type and how to get it.
Different widgets use different methods for obtaining the data. An ‘Image’ widget uses either a path or URL to the image, an ‘HTML
View’ widget uses HTML text or a URL, and a ‘Jasper Viewer’ widget uses a connect string and JasperReport file for data. Data for
the various chart widgets can be obtained either by SQL or a recordset. Depending on your use case, you may choose not to define
data for the widget, in which case you can skip this step and proceed to the next wizard screen. For example, you may wish to
integrate a widget into an existing application by taking advantage of the code that the Widget Wizard generates. In this scenario, the
existing application already has the requisite data, so the Widget Wizard does not need to obtain the data again when creating the
widget definition.

Figure 5 shows the ‘Connect String’ and the ‘Query’ string required to use SQL. The ‘Connect String’ defaults to the ChileCompany
database on the local machine as the guest user. You can easily modify this to connect to your database and machine with the

32

Figure 4. The available widget types

Figure 5. Select the data to fill the widget

Figure 6. A message box showing the error and a tip

appropriate credentials. To view
query results, select [Execute]
after entering a query.

Once your query gives you
satisfactory results, select
the [Update] button to update
the widget and fill it with data.
If there is an SQL issue, a
message box appears with the
type of results required for the
particular type of widget, and
with a tip for the SQL query. See
Figure 6.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

Building Blocks

33

Code Generation
and Execution
The end of the Widget Wizard bears
the fruit of this process. You are
ready to generate the BBj OO code
and let the wizard write it out to a
source file that you specify. The
Javadoc-commented source code
includes an error handler and is
ready to launch if you select either
of the ‘Run in GUI’ or ‘Run in BUI’
checkboxes. See Figure 7.

Clicking the [Next] button causes the
wizard to actually generate and save
the OO code. The generated code
contains a public class that creates
the widgets, which a BBj program
can then access to instantiate and
display the widgets. The code also
includes a short sample at the top of
the file (shown in Figure 8) that does
exactly that so that your widgets
actually run.

The public class definition, partly
shown in Figure 9, contains all of
the code necessary to replicate all
of the widgets and categories you
defined in the previous wizard steps.
The code is complete as-is, but
can be easily augmented to further
modify any of the widgets defined
within. For example, you can find
your chart-based widget object in the
program and add a couple of lines of
code to modify the chart’s colors or
set a background image. Download the
code sample at links.basis.com/14code.

Figure 8. An excerpt from the generated code that instantiates and displays the widgets

Figure 7. Specify a file for the generated code and choose how to run

Figure 9. The class definition in the generated code

http://links.basis.com/14code

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

Building Blocks

34

Figure 10. Running your code in GUI with a summary display

Summary
Using the Widget Wizard as a sandbox to create widget code is a fantastic way for you to get familiar with using widgets.
To try it out, go to links.basis.com/getbbj and select the newest product for download. For assistance running the wizard,
check out the tutorial-in-process at links.basis.com/widgetwizard. It has been our experience that once you create the first
couple of widgets, creating more becomes a snap. The Widget Wizard eliminates the learning curve – like magic!

The summary screen displays the code necessary for embedding the widget inside your application logic (see Figure 10).
You can easily copy this code from the edit box and paste it into your program.

• Read related articles in this issue
 • Easier Decision Making With the Dashboard Utility
 • Dash Boredom With the Dashboard Utility
 • AddonSoftware's Digital Dashboard Takes Off

• Refer to Dashboard Utility Overview in the online Help
• Watch these past Java Breaks
 • Adding the New Digital Dashboard to Your App
 • Embedding Widgets in Your BBx App
 • The New Widget Wizard - Dashboards and Widgets Without Any Code!
• Download the code sample

http://links.basis.com/getbbj
http://links.basis.com/widgetwizard
http://links.basis.com/14dasheasy
http://links.basis.com/14dashutility
http://links.basis.com/14dashaddon
http://links.basis.com/dashdocs
http://links.basis.com/jb-adddashutility
http://links.basis.com/jb-embedwidgets
http://links.basis.com/jb-widgetwizard
http://links.basis.com/14code

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

wo years ago, we took our first step with the release of the DMS Workshop Planning program in BBj. By staggering the
transition process, we were able to ensure our programs were compatible with the new environment, while at the same time
learning about what opportunities BBj offered us.

During the transition, the excellent team at BASIS, from engineers to management, supported us by helping us ensure that our
product stays ahead of the competition and fulfills the specific needs of our customers. While a complete transition is challenging, it
also offers a unique chance to look at our concept afresh, and redefine aspects of the application.

Business Partner
A long-held goal of ours, for example, was to ensure that the Business Partner of a car dealership was always at the heart of the
application. And that is what we achieved with the Business Partner program, which manages all of the information that is available

Partnership

35

CarIT Integrates a
‘New Model’ With BBj

For nearly 15 years, Audev’s CarIT has been the software application of choice for many car dealerships throughout
the Netherlands, Germany, Bulgaria, and Mexico. Its power and popularity primarily lie in its two main modules named
as the Dealer Management System (DMS) that manages all administrative tasks in the dealerships, and the Customer
Relationship Management (CRM) module, which addresses all marketing-related activities.

The origins of these modules date back nearly 30 years. In the late 1990s, Audev rewrote their DMS, originally based on an
application from the 1980s, with Visual PRO/5® and PRO/5 Data Server®. In early 2000, Audev integrated the Visual Basic
6-developed CRM with the DMS. Needless to say, there was a great opportunity for enhancing these modules and addressing
the disadvantage of maintaining two databases in one application and developing in two different languages. With BASIS
technology moving forward so fast and offering such a variety of new and exciting features, Audev took the step to fully
upgrade CarIT to the BBj® environment and eliminate the Microsoft technology components.

Read on for a close look at how Audev, in their own words, modernized their application with BBj.

 T

Wimco Driesse
CIO Audev BV Figure 1. The business partner as the central object

to help dealers to provide efficient and professional service to
their customers. The program displays a ‘tree view’ on the left
with relevant information such as cars, contact plannings, and
order history (see Figure 1).

To manage the Tree control, we designed and used a custom
BBj class object. This hides the details of the original component
and provides an easy interface to implement in other parts of the
application. Depending on the role of the users, they can access

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

Partnership

key functions from the tree with a right mouse click as shown
in Figure 2.

Across the top of the main screen are a number of tabs with
related information, all available to users according to their
access rights. On the ‘General’ tab, we store information
about social media accounts to which it will be possible to
send messages via the CarIT Communication Handler (see
Figure 3).

Diary
The second major redesign was the ‘Diary’ program (a
calendar program with scheduling support) as shown in
Figure 4. BBj made it easy to develop this program that
enables users to create and manage meetings, appointments
with their business partners, and other events.

Google Apps Integration
We are working to implement a calendar that more closely
matches the look and feel of Google Calendar. To accomplish
this, we are collaberating with the BASIS engineers to update
the BASIS-provided GApps building block utility to the new
Google Calendar API version 3.0. This allows us to reach our
goal without having to develop that functionality ourselves.

The integration will be a two-way process between Google’s
calendar and the CarIT calendar. For example, if Karl makes
an appointment in the CarIT calendar, the program updates
his Google calendar, and when he creates an appointment
in his ‘external’ calendar, it appears in the tree view as an
imported appointment. From here, he can invite a business
partner to the appointment and from then on, the calendars
are linked and updated in both directions.

Figure 4. CarIT Diary program

Figure 2. In the tree, a right mouse click brings up a pop-up menu

Figure 3. The General tab contains communications options including
social media accounts

36

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

Partnership

37

Audev, founded in 1989, develops software for
the automotive industry using the talent and
experience of developers with roots in both
automation and the automotive sector. Audev's
software, CarIT,
is the first open
DMS capable of
handling multiple
makes, multiple
manufacturers, multiple suppliers and multiple
languages. Its leading edge technologies allow
CarIT to fully integrate and interface with the
communications tools and applications programs
of the various manufacturers. Long-lasting
relationships with the users of CarIT products,
established by leasing and not selling the
software, ensuring that CarIT suits the needs of
every dealership, for every dealer size, for every
brand, in every language. www.audev.com

Wimco Driesse, CIO of Audev since 1999, has
been active in the automotive industry for more
than 18 years. Wimco is responsible for all new
product development in Europe, Latin America,
and the US.

the Windows desktop. This
MDI menu system takes into
account the existing rules for
security while still maintaining
the company concept of CarIT.

Here again, the BASIS
engineers provided assistance
that was very helpful. We
adopted some existing
components from the BASIS
GitHub repository and moved
forward quickly. This part
of the project is still under
development, but Figure 6
gives you a sample of the ‘new’
menu panel of the MDI.

Layer Functions
In addition, we created a component for the ‘Diary’ program
that handles all the user interface layer functions. A user can
easily drag and drop diary events within Timed and Not Timed
zones. Events scheduled for the same time will appear split
over the available display area. To implement this component,
we created multiple BBj custom classes and are also using
multiple Java classes to maintain the data in memory. This
gives optimal user performance even in a multi-user system
with minimal hardware capacity.

Grid Enhancements
One critical component of the ‘Diary’ program is the grid.
BASIS engineers enhanced the BBjGrid control with new
functions so we were able to implement all our requirements.
We developed all of the other functionality in-house without any
notable problems. When issues arose, BASIS engineers were
able to help us solve them within BBj.

Menu
In examining the existing DMS, we decided that the menu
looked outdated; Figure 5 shows the legacy menu.

Figure 5. Legacy CarIT menu

Summary
In the next few months, we will release our integrated
DMS/CRM version of CarIT. Combining a new look and
feel, a great team of Audev engineers, and the support of
BASIS engineers – and based on BASIS’ BBj technology –
CarIT is ready for the future.

But ... we’re not done yet! We already have other ideas
in mind like extending parts of the application to mobile
devices, moving to a browser user interface, and many
more. With so many exciting opportunities offered by
BBj technology, the road ahead for CarIT is a long and
interesting one!

Figure 6. Prototype of the
new MDI CarIT menu panel

To give it an improved
look and feel, we replaced
it with a new, modern
multiple document
interface (MDI) menu
system. In an MDI menu,
tasks launched from the
menu’s MDI parent are
separate invocations of
BBj but they live inside the
menu’s workspace. This
ensures that the processes
are tied together and
show as a single task on

https://github.com/BasisHub/
https://github.com/BasisHub/
http://www.audev.com

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

he CodeEditor in the BDT (Business BASIC Development Tools) Eclipse plug-in is a powerful, full-featured editor for BBj®
programs. What makes the BDT one of the best options for developing BBj programs is that it not only inherits a number of
features from the DLTK (Dynamic Languages Toolkit) framework on which it is built, but BASIS engineers enhanced it further
by adding several supplementary capabilities specific to the BBj language. As with most sufficiently advanced editors, it’s

capable of so many functions that often times new users are not aware of all that si avaialble. Worse yet, Business BASIC developers
may not be using the CodeEditor to its fullest, and may be missing out on capabilities, time saving tips, and other productivity
enhancements that ‘power users’ put into practice on a daily basis. This article does not attempt to cover the myriad of options that
the BDT offers, but rather covers a few of the ‘can’t live without’ features that we have compiled after polling several BASIS engineers
who spend a good chunk of their day inside the Eclipse IDE.

Quick Access to Anything
Eclipse can do innumerable things without a mouse like using only keystrokes to access menu options, tool buttons, and more. Many
options and commands are available that, in all likelihood, most programmers don’t know about or wouldn’t know how to get to. For
example, press [Ctrl]+[Shift]+L, or [Cmd]+[Shift]+L (z⌥L) on OS X, to see the myriad of key commands that are not only available,
but customizable to your liking. Finding the right keystroke or command may seem like looking for a needle in a haystack, but Eclipse
offers a great way to give you easy access to whatever you’re looking for with the Quick Access search option. Located at the top
right of the toolbar, you can type in bb as shown in Figure 1 to display a list of commands, menu items, preferences, and more that
contain the letters bb.

By Nick Decker
Engineering
Supervisor

38

Development Tools

Figure 1. Fast access to almost everything is available from the Quick Access search

BDT Tips for
Less Pain and More Gain

 T

http://www.eclipse.org/dltk/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

In practice, this Quick Access search feature is a huge timesaver. For example, you can type the word font into
the search bar (shown in Figure 2), then select the first ‘Commands’ option to display the ‘Fonts and Colors’
preferences dialog. You can access the desired preference pane in just a few keystrokes using the Quick Access
search, which is much faster than using the mouse to navigate the menu and preferences hierarchy, even
assuming you know where the command resides in the first place.

Figure 2. Quick access to the Colors and Fonts preference is just a few keystrokes away

Program Navigation – Outline View
Eclipse’s ‘Outline’ view is at the top of most programmers’ list of favorites because it provides an efficient way to
navigate through a program. In a standard BBj program, it lists variable declarations, program labels, and functions.
In an object-oriented program, it’s even more useful as you can drill down into classes to see methods as well as
class and method field variables. Everything has a unique icon shape and color so you can readily tell at a glance the
difference between classes and interfaces, as well as private, protected, and public methods and variables.

The tree node entries are chock full of information too. For example, instead of just listing all possible methods in a
class, the entries display each method’s parameter list of variables and their type, and the return type of the method.
Figure 3 demonstrates this with the applyCss() method that appears highlighted in the outline view and selected in
the CodeEditor.

Figure 3. Navigating to a method in the CodeEditor (left) using the Outline view (right)

The Outline view’s toolbar icons located at the top of the view make it even more flexible, allowing you to sort the
view contents alphabetically, hide/show components, expand/collapse nodes, and more.

39

Development Tools

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc40

Development Tools

Program Navigation – Bookmarks
Bookmarks are another great way to quickly navigate through code and find often-used methods or routines. Simply select one or
more lines of pertinent code, then select the [Add Bookmark…] option from the ‘Edit’ menu, and enter a meaningful name in the
prompt. All of your saved bookmarks will appear in the ‘Bookmarks’ view as shown in Figure 4. If you do not see the bookmark view
by default, go to the menu and click on Window > Show View > Other > Bookmarks, then place the view anywhere you desire in the
IDE for quick reference.

The bookmarks are associated with the program and selected code, so opening up a bookmark from the list causes the BDT to
load the appropriate program, jump to the code of interest, and even select the original lines of code. You can freely add or remove
code in the original program and the bookmark will still be valid, as Eclipse updates its location dynamically to stay in sync with any
insertions or deletions.

Editing – Multiline Comments
The BBj language uses the REM Verb to indicate comments in a program, but what about the scenario when you would like to
comment out a large block of code? Programmers often write test code intended to replace sections of their original program, but
using the REM Verb to remark individual lines can be burdensome. The CodeEditor has an elegant solution to this, as you can
highlight any number of lines of code, then select Source > Toggle Comment or the appropriate hotkey: [Ctrl]+/ in Windows and
Linux or [Cmd]+/ (z/) on OS X. This instantly adds or removes REMs to every selected line, making it quick and easy to remark
multiple lines of code at once. Figure 5 shows the same block of code before and after toggling comments in the editor.

Figure 5. A block of code before (left) and after (right) toggling comments

Editing – Multiline Editing
Block selection mode is another sometimes little known favorite that can really be a time saver. You can simply toggle block
selection mode using the keystrokes [Alt]+[Shift]+A on Windows and Linux or [Cmd]+[Opt]+A (z⌥A) on OS X. Turning on this
editing mode allows you to select rectangular blocks of text rather than wrapped lines to easily delete, move, copy, or paste these
blocks just as you would any other selection. After turning on block mode the font may change, depending on your configuration for
the ‘Text Editor Block Selection Font’, indicating the new selection mode. You can then make rectangular selections (see Figure 6)
where the selection is a one-character column from lines 412 to 419.

Figure 6. Selecting a column of text in block mode

Figure 4. The bookmarks view showing saved bookmarks from multiple programs

http://documentation.basis.com/BASISHelp/WebHelp/commands2/rem_verb.htm

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 41

Development Tools

After selecting the column, you can type in text that is then inserted on all eight of the selected lines simultaneously. Figure 7
shows how we inserted the 'sql$ = sql$ + ' text on all of the lines at once, completing the code and resolving the syntax
errors indicated in Figure 6.

Figure 7. Inserting text into eight lines simultaneously

Editing – Templates Do Your Typing
Developers usually find themselves typing certain code patterns frequently, such as the familiar FOR/NEXT verb loop or
IF/THEN/ELSE conditional statements. Templates in Eclipse are similar to word processor macros, as they transform a few
characters into predefined blocks of code. This not only saves time, but the resultant code is already indented and formatted,
thus improving consistency. The BDT comes with several default templates that you can access via the Content Assist
keystroke combination of [Ctrl]+[Space]. For example, type if and invoke Content Assist, after which you can select the
desired built-in template. Figure 8 shows what this looks like in the editor.

Highlighting a template in the popup window results in
a preview of the defined code block, and selecting the
template inserts the code into our program. Templates also
save time by eliminating our need to position the cursor with
the mouse. In the example above, after inserting the code
into our program, the template selects the condition text.
That means we can type in the appropriate condition for our
program, which overwrites the placeholder text. Additionally,
pressing the [Return] key causes the template to advance
the cursor intelligently in between the IF/ENDIF lines. Not
only did the template leave the THEN portion intact, it also
correctly indented the cursor.

Figure 8. Using a template to insert a block of code

To get the most out of templates, create your own to help automate your development process. Templates can take advantage
of pre-defined variables such as ${cursor}, which specifies the cursor position when exiting edit mode, or ${word_selection}
that resolves to the content of the currently selected text. These variables allow you to add a level of sophistication and flexibility
to your templates so that they will be more valuable than simply pasting in static blocks of code.

Editing – Revision Comparisons
On occasion, every programmer has broken a piece of code that used to work perfectly. Usually this occurs after hours of work
and many changes to the code, making it a challenge to know which change is responsible for the problem. If you’re using
a source code repository, you can use Eclipse to compare your current code to the latest version in the repository. But what
about when you’re working on code that you haven’t checked in yet? Eclipse handles that case too, as you can right-click on
the program, select Compare With > Local History to open the ‘History’ view. Eclipse keeps a running list of revisions that are
timestamped and available in the History view so that you can see a list of your recent changes and compare the current code
to one of those versions. You can even configure the Local History to set limits such as retention time, saved changes per file,
and maximum file size in your workspace preferences.

Editing – Quick Diffs
Side-by-side comparisons are definitely useful, but if you want a quicker, easier way to see the changes you’ve made in
your code, use the real-time Quick Diff. You can configure Quick Diff in preferences and set the various colors for changes,
additions, and deletions as well as configuring the reference source. You can set the reference source to ‘Version on Disk’,
but comparing local copies to the latest in a source code repository yields much more functionality. After configuring it to
show in the ruler, both the left and right edges of the CodeEditor will display colored blocks, visually depicting changes to the

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

on multiple projects, each with different editors and plug-ins. Memory
usage can have a direct impact on performance and Eclipse gives
you a way to keep an eye on memory consumption. You can mark the
General > ‘Show heap status’ checkbox option in Eclipse’s preferences
to display information about the current Java heap usage. The heap
status is located in Eclipse’s bottom status bar, as shown in Figure 10.

• Read these BASIS International Advantage articles:
 • Have it Your Way With New BDT Preferences
 • Eclipse: The Toolset of the Future
 • Double Your Pleasure With Eclipse Plug-in Documentation
 • Check out these additional resources:
 • BASIS documentation
 • Eclipse documentation
 • FAQ How do I increase the heap size available to Eclipse?

The graph and numbers indicate how much memory Eclipse is currently using versus how much memory you have allocated to it. It
also includes a garbage can icon that when clicked performs a garbage collection to free up any reclaimable memory.

If you find Eclipse constantly running close to its maximum heap allowance, you can increase its heap size as detailed in the
FAQ How do I increase the heap size available to Eclipse? Depending on your usage of the IDE and your machine’s amount
of physical RAM, increasing the amount of memory available to Eclipse can dramatically improve performance.

Summary
Eclipse is such a powerful and capable development environment that detailing every aspect and feature would take an entire
book (of which there are plenty, not coincidentally). This article took a different approach, and limited its scope to a select set
of features that BASIS engineers use on a daily basis. If you have not heard of some of them, or have yet to put them into
your development cycle, give them a try today and see how they can increase your productivity.

Figure 10. The amount of currently used versus allocated memory in Eclipse

42

Development Tools

code. In Figure 9, red corresponds to code deletions, green to additions, and blue to changes in the existing code. The left ruler
shows changes for each adjacent line and the right ruler shows changes for the program as a whole. More specifically,

 • Red number 1 indicates a place where code has been deleted, and after hovering your mouse over that block, a
 popup appears showing what the deleted code block looked like. If you want to undelete it, just copy it from the popup
 and paste it back into the program, or right click and select [Restore Deleted Lines].

 • Green number 2 shows that this section of the code is new compared to what is checked in to the repository.

 • Blue number 3 shows other places in the program where code has been changed.

Figure 9. The Quick Diff ruler entries showing changes to the program

Hovering over a block on the
right ruler in Figure 9 shows
information about the section,
and notes in a popup in the
lower right that there is a new
line label and it added 22
lines. Clicking on any block
in the right hand ruler jumps
immediately to that section
of the program and selects
the new or modified code. In
this way, the Quick Diff not
only shows you changes to
your code at a glance, but it
also serves as a rapid way to
navigate in your program and
jump to other modifications in
the file.

Memory Management
Eclipse is a multi-purpose
development environment
and you may have dozens
of different modules besides
the BDT installed to work

http://wiki.eclipse.org/FAQ_How_do_I_increase_the_heap_size_available_to_Eclipse%3F
http://links.basis.com/14bdtprefs
http://links.basis.com/13bdt
http://links.basis.com/13eclipsedocs
http://documentation.basis.com/BASISHelp/WebHelp/eclipse-bdt/bdt_overview.htm
http://links.basis.com/eclipseini
http://wiki.eclipse.org/FAQ_How_do_I_increase_the_heap_size_available_to_Eclipse%3F

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 43

Building Blocks

he Dashboard Utility eases BBj developers’ job in many ways, providing built-in functionality that would normally require
significant coding time and development. The utility also simplifies application development by providing a higher-level API
in addition to adding several useful niceties. This article takes an in-depth look at a few of the ways the Dashboard Utility
reduces development time and facilitates building high quality dashboards in a modest amount of code. The Dashboard

Utility delivers data in a format that will allow business owners and managers to turn decision making into child’s play!

Layout is Easier
When you create a dashboard such as the one in Figure 1 that we built in our Java Break Adding the New Digital Dashboard to
Your App, you reap the benefits of a fully functioning layout system.

Easier Decision Making With
the Dashboard Utility

 T

By Nick Decker
Engineering
Supervisor

The DashboardControl is the top-level window that contains all of the dashboard elements, already programmed to handle events
such as maximizing, minimizing, resizing, and positioning. Better yet, it saves these preferences so that the dashboard will be the
same size and in the same position the next time you run it. Whenever you change its client area, such as maximizing or resizing
the window, it internally calculates the new client area and the optimum size and placement for all of the widgets.

Figure 1. The dashboard program built during the Java Break

http://links.basis.com/uklpt%20
http://links.basis.com/uklpt%20
http://documentation.basis.com/BASISHelp/WebHelp/utils/Dashboard/DashboardControl.html

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc44

Building Blocks

Dashboard widgets come with a
default minimum and maximum
width that the dashboard uses
when calculating the number
of rows and columns to show.
The result is that the dashboard
displays the widgets at a
calculated size that makes the
best use of the available client
area. So depending on whether
you resize the dashboard window
to be tall and narrow, or short and
wide, you may end up with two
columns of three widgets each,
or three columns of two widgets
each. This means it is even
possible to run the dashboard
on a smartphone or other mobile
device, as it resizes the window
and widgets automatically to make
the best use of the limited space.
Because you can control the
widgets’ minimum and maximum
size, along with the spacing
between the rows and columns
of widgets, you can influence
the layout and customize it for
a particular device, as shown in
Figure 2.

The dashboard also responds to
device orientation changes so you
get a different layout in portrait and
landscape mode. Figure 3 shows
the same dashboard program
running in a smartphone in
landscape orientation.

Data is Easier
One of the more striking examples of how the API streamlines development deals with populating charts with data. For example,
you would typically incorporate a BBjBarChart into an application with the following program flow:

	 1. Add the BarChart to the window via the addBarChart() method, providing several initial parameters.

	 2. Initialize data access from a file or database.

	 3. Retrieve the data in a loop.

	 4. Execute the setCategoryName() method to add a data category based on the data.

	 5. Execute the setSeriesName() method to add a data series based on the data.

	 6. Repeatedly execute the setBarValue() method to add data to the chart.

The Dashboard Utility takes over the onus of creating a window and handling its events, so instead of adding a BBjBarChart
to a window via the addBarChart() method, your code will add a BarChartWidget to a DashboardCategory via the
addBarChartDashboardWidget() method. These two methods are similar in theory and somewhat related in practice, as
they both take parameters to indicate the chart’s labels, orientation, dimensionality, etc. The difference is that you can
populate the chart automatically by providing a BBjRecordSet or a database connection string and SQL query to the
addBarChartDashboardWidget() method.

Figure 2. The effects of changing the widget size for a smartphone running in portrait mode

Figure 3. The dashboard running on a smartphone in landscape mode

http://documentation.basis.com/BASISHelp/WebHelp/gridctrl2/bbjbarchart.htm
http://documentation.basis.com/BASISHelp/WebHelp/winmethods3/bbjwindow_addbarchart.htm
http://documentation.basis.com/BASISHelp/WebHelp/sysguimethods3/bbjbarchart_setcategoryname.htm
http://documentation.basis.com/BASISHelp/WebHelp/sysguimethods3/bbjbarchart_setseriesname.htm
http://documentation.basis.com/BASISHelp/WebHelp/sysguimethods3/bbjbarchart_setbarvalue.htm
http://devserver.basis.com/BASISHelp/WebHelp/utils/Dashboard/BarChartWidget.html
http://devserver.basis.com/BASISHelp/WebHelp/utils/Dashboard/DashboardCategory.html
http://devserver.basis.com/BASISHelp/WebHelp/utils/Dashboard/DashboardCategory.html#addBarChartDashboardWidget(BBjString,%20BBjString,%20BBjString,%20BBjString,%20BBjString,%20BBjString,%20BBjString,%20BBjNumber,%20BBjNumber,%20BBjNumber,%20BBjString,%20BBjString)

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 45

Building Blocks

The utility takes on the task of populating
the chart, saving you a lot of time, code,
and effort. Of course, you can still create
an empty BarChartWidget and populate it
with data yourself, just as you did with the
BBjBarChart. However, instead of using three
different methods to add categories, series,
and set values, you can accomplish the same
thing with a single setDataSetValue() method
call that adds the underlying categories and
series for you automatically. The bar chart
shown in Figure 4 is a perfect example, as
it was created with a connection to the Chile
Company database and an SQL query that
retrieved the top four customers ordered by
their sales thus far this year. Figure 4. A dashboard widget that was filled automatically given an SQL connection and query

Formatting Grids is Easier
Other perks are sprinkled throughout the API, and our next example deals with formatting the appearance of a GridWidget. In
many cases, you’ll want to customize the width of a grid’s columns to improve legibility by allocating more space to columns with
more data. For example, when displaying customer addresses, the City column requires more space than the State column that
only shows two-character abbreviations. To accomplish this with a typical BBjGrid control, you would make repeated calls to the
setColumnWidth() method, providing the column number and the desired width in pixels.

The dashboard’s GridWidget is flexible, and often changes size depending on the size of the dashboard itself, a minimum
or maximum widget size preference set by the developer, and whether or not you popped the widget out. Because of
the various size possibilities, setting an absolute pixel width for a column isn’t feasible. Instead you can call one of the
setColumnWidthPercentages() methods to specify the width of all of the columns at once based on a percentage of the grid’s
width. The line of code below demonstrates setting the widths of all four of a GridWidget’s columns at once using a comma-
delimited string of percentage values, although another variation of the method exists that takes a BBjVector as the parameter.
This line indicates that the first column should take up 20% of the grid’s total width, the second column should take up 35%, and
so on for a total of 100%.

The resultant grid’s columns are sized perfectly as shown in Figure 5, even when the grid is resized or popped out and enlarged.

Figure 5. The result of setting the grid’s column widths in percentages

JFreeCharts are Easier
When working with a BBjChart, you could
always get the underlying JFreeChart client
object via the getClientChart() method. This
allowed you to exercise literally thousands of
methods against the underlying chart and its
components such as its plot, renderer, legend,
and all of their components. On the plus side,
you had complete control over the resultant
chart. On the minus side, the JFreeChart
API is sufficiently deep and complex that in
practice very few developers went through
the effort to make any modifications at all.
Additionally, since the getClientChart() method
returns a client object, this means that it is not
an option in BUI and therefore is even less
likely to be used.

In direct contrast, it is relatively simple to
make dramatic and sweeping customizations
to a dashboard chart, usually in just a couple
of lines of code. For example, you can easily
customize all of the chart’s colors, either
by selecting a pre-existing color theme or
providing your own colors, in a single line of
code. Likewise, you can also change the font

http://devserver.basis.com/BASISHelp/WebHelp/utils/Dashboard/BarChartWidget.html#setDataSetValue(BBjString,%20BBjString,%20BBjNumber)
http://devserver.basis.com/BASISHelp/WebHelp/utils/Dashboard/GridWidget.html
http://documentation.basis.com/BASISHelp/WebHelp/gridctrl2/bbjgrid_basic_methods.htm
http://documentation.basis.com/BASISHelp/WebHelp/gridmethods/bbjgrid_setcolumnwidth.htm
http://devserver.basis.com/BASISHelp/WebHelp/utils/Dashboard/GridWidget.html#setColumnWidthPercentages(BBjString)
http://www.jfree.org/jfreechart/api/javadoc/
http://documentation.basis.com/BASISHelp/WebHelp/sysguimethods3/bbjchart_getclientchart.htm

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

sizes or colors for all of the elements in a chart in a single line of code. In addition to being efficient, the high-level API relieves you
from the effort required to drill down into the JFreeChart hierarchy to affect changes. This means you can change the colors on
the chart widget itself, instead of getting the underlying chart, getting the plot from the chart, getting the renderer from the plot, and
executing the setSeriesPaint() method on the renderer to set the colors.

The dashboard shown in Figure 6 shows the result of chart customization. By taking advantage of methods on the widgets,
we were able to set custom chart colors, modify the fonts, change the background color of the legend, add a drop shadow to
the plots, and change the range axis to format the values as currency. All of this was possible in just a few lines of code on the
widgets, whereas it would have taken a significant amount of low-level code to accomplish the same task on a JFreeChart object.

Figure 6. A dashboard with customized widgets

Summary
The BASIS Dashboard Utility curtails the amount of effort required to visualize your data effectively in a single widget or complete
dashboard. Gone are the days where you would have to write database integration code in order to populate BBjCharts, as the
Utility can automatically populate and refresh widgets for you. The Utility also handles other crucial tasks, such as sizing and
positioning widgets, so your dashboard looks fantastic – even on mobile devices such as smartphones and tablets. If you have
not done so yet, take the Dashboard Utility out for a spin by visiting our BUI Showcase page and running some of the Dashboard
Demos on your favorite computing device!

 • Watch the Java Break Adding the New Digital Dashboard to Your App on YouTube

 • Refer to other articles in this issue
	 • Dash Boredom With the Dashboard Utility
	 • The Magic of the Widget Wizard

 • Visit the online Help
	 • Dashboard Utility Overview
	 • Dashboard Javadocs

46

Building Blocks

Missed an Issue?

www.basis.com/advantage

http://www.jfree.org/jfreechart/api/javadoc/org/jfree/chart/renderer/AbstractRenderer.html#setSeriesPaint-int-java.awt.Paint-
http://links.basis.com/buidemos
http://links.basis.com/jb-adddashutility
http://links.basis.com/14dashintro
http://links.basis.com/14widget
http://links.basis.com/dashdocs
http://links.basis.com/dashjavadocs
http://www.basis.com/advantage-overview

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 47

ike all software products, AddonSoftware® by Barista® is an evolving complex system with many parts that make up the
whole. The AddonSoftware business logic is the brains that control what it does, and the BBj®/Barista framework is how it
gets that job done. With every change to either part of the system, the possibility of an error or incorrect logic entering into
the system becomes greater. A robust testing procedure that uses tools that are consistent and logical finds such defects

before they become big problems.

In traditional software testing, the developer performs the Component and Unit testing stages. Then the Quality Assurance team
does System Integration testing, which can use up a significant amount of people, time, and money executing manual tests. Using
an automated testing system is a better use of resources, exercises the software consistently, and finds defects more quickly. In
fact, when an abnormal action or error happens, it can even automatically notify the testing team of a problem!

BASIS recognized the value of such a testing procedure and selected Quality First Software's QF-Test (www.qfs.de) for automated
integration testing. QF-Test is a Java-based professional tool to automate testing of Java and Web applications with a graphical
user interface, and it helps BASIS to find bugs faster.

Testing Infrastructure
A consistent software testing methodology in a modern programming environment provides critical feedback to both the developers
and management that a quality product is being produced for the public. In a complex system like AddonSoftware by Barista, the
chance of abnormalities showing up in even a well-designed, logically thought out design become even greater. Large or small, these
defects need to be caught early in the development cycle to allow the developers time to correct them and to reduce the repair costs.

Using an automated testing framework such as QF-Test results in faster delivery of a cleaner product, a win-win for all. Customers
receive a better product and BASIS can better use resources to address issues that do make it into the field.

Of course, there is nothing like the real world data and procedures to expose issues in the software that the engineers did not
design for or anticipate. That is why BASIS includes sample databases in the downloadable BASIS Product Suite .jar file. Testing

Brian Sherman
Software Developer

 L
Putting Your Software Through its Paces

with the same set of consistent data in the databases allows BASIS to create and execute
tests that can depend on predictable data and software responses. This allows QF-Test
to execute tests on Barista and AddonSoftware designed to exercise as many of the key
functions as possible with predictable results. When the results don’t match what is expected,
the test is flagged as having an abnormality to indicate that it needs to be examined
further. Not all abnormalities are problems, some are minor but could be indicative of larger
problems. In software testing, having as many eyes as possible on the product is a good
thing. With the use of automated testing the process of finding problems before they are
issues is much faster, more thorough, and repeatable. The result is a much more solid final
product release.

http://www.qfs.de

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

Executing Test Suites
QF-Test controls the system under test by using test scripts called Test Suites to drive the testing sequences. A Test Suite is a
collection of action steps that make up a logical sequence. Breaking up the steps into a series of Test Case steps makes it easier
to debug the testing script when an unusual action occurs during execution.

Each Test Suite consists of a series of actions: Setup (start), the Test case execution, and Cleanup (stop). Each of these actions
performs a critical role in the testing process. Setup is where QF-Test creates the test environment. Here, QF-Test sets the global
variables, starts Barista, logs in, and takes control. Next, it starts to process the action steps of the tests. As it steps through individual
tests, QF-Test checks for multiple conditions such as whether the forms and data display correctly, whether the prompts appear in
the correct order, and if they appear within a reasonable time. If any of these conditions don’t occur as expected, QF-Test stops
execution and displays an error. If the Test Suite completes without any errors flagged, QF-Test executes the Cleanup section and
shuts down the system under test.

The example shown in Figure 1 runs through the AP to GL cycle. This Test Suite tests such key Barista components as Header/
Detail Entry Grids, Document Processing (PDF and Jasper Reports), and of course the AddonSoftware business logic. It also

Figure 1. Test suites for AP to GL

tests for “under the hood” components such
as displaying information, timing of actions,
and operating system interactions such as
cursor movement and keyboard function keys.
As you can see, it logically steps through
the business logic and performs the entry of
an AP Invoice, selection and payment. With
printing the ‘Registers and Updates,’ it verifies
that the data flows through the AP module to
the GL module.

Reporting Test Results
When QF-Test encounters an abnormality
during execution of a Test Suite, it stops and
brings up the display as shown in Figure 2.
This shows a ‘Component not found’ type of
error message window. In addition, QF-Test
can automatically start its internal debugger
sub-system to assist with tracking down the
problem. This error occurred when the QF-Test
was unable to properly start and connect to
the AddonSoftware client.

Figure 2. QF-Test ‘Component not found’ error

48

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

To Test or Not to Test, That was the Question
With manual testing, there is the age old trade-off of resource costs
against the quality gained. Deciding when to test was as much an art as
a skill. However, with QF-Test’s automated tests, we can run our tests as
often as we like, kicking them off as a side-effect of a successful build,
and have the results ready to view first thing the next morning. One
benefit of this that often goes overlooked is that these same tests now
work as Regression Tests. That means that we can run them on every
build, regardless of what the development team has changed, and even
detect side effects that may arise in unrelated areas of the product. In
other words, we can make sure that we didn’t break something in one
place by fixing a defect in another.

Many Happy Returns on our Investment
Automated testing is not for everyone – there can be a considerable up-
front cost in training and in developing the automated tests needed to
cover your program adequately. Nothing is free. At BASIS, it is worth it.
We do nightly automated builds and run the QF-Test tests on the result,
only requiring human intervention when the test detected a defect. We
call that “peace of mind,” and it saves us money in the end. The sooner
we detect a problem, the less expensive it is to fix, the faster we can
release our products, and the sooner our developers and testers can
move on to other important tasks.

In Figure 3, QF-test has completed the Test Suite and reported ‘0 exceptions and 0 errors’ as shown in the lower right
corner of the Test Suite results. The number of warnings shown indicates that there were items that, while not an error or
an exception, could cause problems and should be reviewed.

Figure 3. Successful Test Suite

“In particular, the testing of GUIs
is more complex than testing
conventional software, for not only
does the underlying software have
to be tested but the GUI itself must
be exercised and tested to check
for bugs in the GUI implementation.
Even when tools are used to generate
GUIs automatically, they are not bug
free, and these bugs may manifest
themselves in the generated GUI,
leading to software failures.”

Atif Memon, et al., Using a goal-driven
approach to generate test cases for GUIs
in ‘Proceeding of the 21st International
Conference on Software Engineering,’ pages
257-266, IEEE Computer Society Press, 1999

49

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

When the news came out about Heartbleed, our immediate concern at BASIS was to determine what impact Heartbleed might
have on customers using our product line. Heartbleed required an immediate investigation and an immediate response.

Our investigation showed that BBj® was not affected. The only BBj component that used OpenSSL was an ODBC client for
Windows, which has both a 32-bit and a 64-bit version. At that time the 32-bit version was using OpenSSL 0.9.x, which was

Language/Interpreter

very day the Internet is a battlefield where cyber security black hats and white hats fight for control of your computer.
Some days the good guys win. Some days the bad guys win. And some days it isn’t clear that anybody wins. But one
thing is for sure, computer security is something that can only be ignored with great risk, and it is likely that it will only
become more critical to you and your business as time marches on.

BASIS is committed to monitoring and responding to computer security issues as they are detected. Occasionally a major security
issue is announced that requires immediate action – such was the case with the Heartbleed Vulnerability.

Heartbleed Vulnerability
The Heartbleed Vulnerability was a major security issue that was announced in April 2014 as “CVE-2014-0160,” where CVE
(Common Vulnerabilities and Exposures) is the Standard for Information Security Vulnerability Names maintained by the MITRE
Corporation.

Bleeding Heart Computer Security

By Dan Christman
Software Engineer

By Jerry Karasz
Software Architect

Heartbleed was essentially a security hole in versions 1.0.1 through 1.0.1f of an Open Source
encryption library called OpenSSL. If an attacker could open a connection to a service
using an affected version of OpenSSL, the security hole allowed the attacker to extract
random data from a memory buffer that might contain sensitive data such as passwords and
encryption keys.

“The Heartbleed bug allows anyone on the Internet to read the memory of the systems
protected by the vulnerable versions of the OpenSSL software. This compromises the
secret keys used to identify the service providers and to encrypt the traffic, the names
and passwords of the users and the actual content. This allows attackers to eavesdrop on
communications, steal data directly from the services and users and to impersonate services
and users.” heartbleed.com

 E

50

http://www.howtogeek.com/157460/hacker-hat-colors-explained-black-hats-white-hats-and-gray-hats/
http://heartbleed.com/
http://heartbleed.com/
http://cve.mitre.org/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

unaffected by Heartbleed, but the 64-bit version was using OpenSSL 1.0.1c and was potentially at risk. Further investigation
showed, however, that the 64-bit ODBC client was not vulnerable to the Heartbleed issue because Heartbleed only affected
software that would accept incoming socket connections.

The investigation also showed that PRO/5® and Visual PRO/5® used OpenSSL for SSL sockets, but that the OpenSSL version
being used was 0.9.x, which was unaffected by Heartbleed. Having determined from our investigation that no action was needed
on BASIS’ part, and that all was right with the world, we announced our results and went back to our development tasks secure in
the knowledge that Heartbleed was not our problem.

Reverse Heartbleed Vulnerability
And then came the Reverse Heartbleed announcement. Reverse Heartbleed was a security hole similar to Heartbleed that
allowed a malicious server that accepted a connection from a vulnerable client to extract random data from the client's memory
buffer (that is why it is referred to as the “reverse”). Reverse Heartbleed could only be exploited by tricking a vulnerable client into
connecting to a malicious server, a situation that was not as common as the Heartbleed vulnerability. Back to work to investigate
the BASIS product line yet again.

The investigation showed that the 64-bit BBj ODBC client for Windows was the only product that offered any possible vulnerability
to Reverse Heartbleed. Since it was just barely possible that a malicious server could steal sensitive information by tricking a
client into using a BBj 64-bit ODBC client to connect to it, we upgraded the 64-bit ODBC DLL to the latest OpenSSL version.
We released an updated 64-bit ODBC DLL for those who might need to patch an older version of the BBj 64-bit ODBC client for
Windows without upgrading to the latest version of BBj, and created a knowledge base article Heartbleed Fix for 64-bit Windows
BBj ODBC Driver to help customers understand the issue.

Proactive Updates
Even though PRO/5, Visual PRO/5 and the 32-bit BBj ODBC client for Window were never affected by Heartbleed or Reverse
Heartbleed, BASIS upgraded the OpenSSL library that those products use to the latest version that contained the official fix for
those vulnerabilities.

Besides the potential language impact, Heartbleed brought an operating system compliance cost. BASIS’ Transformer AMI
(Amazon Machine Image) includes a version of OpenSSL, and Amazon Marketplace insisted on a full upgrade to OpenSSL
version 1.0.1g. Shortly thereafter, they required a second compliance upgrade to OpenSSL version 1.0.1h.

In today’s compliance-driven world, it is important to remain current with the most secure versions of the software upon which
your business relies. BASIS’ Transformer AMI has a compliant OS, and the newer versions of BASIS products ship with a current
version of OpenSSL that contains the official fix for both vulnerabilities.

Summary
The BASIS product line was never affected by the Heartbleed vulnerability because its only affected component could not
accept incoming socket connections. The 64-bit ODBC DLL that had a vulnerable version of OpenSSL was affected by Reverse
Heartbleed in that it cannot accept incoming connections.

Computer security is a constant battle. Everyone can make a mistake, as the developers of the OpenSSL library did. The
important thing is that we all remain vigilant and on the lookout for as many of these problems that we can and work to address
them as quickly as possible.

Remember, if your applications use an OpenSSL library with version 1.0.1 through 1.0.1f (inclusive) for socket communications,
you should review the information about Heartbleed and Reverse Heartbleed and investigate your programs for yourself. You
may have created a security issue of your own. Meanwhile, we at BASIS will continue to watch for potential security issues in our
product line and work to keep you informed and up to date. Keep your BASIS products updated to be secure!

For more details, refer to the knowledge base article
Heartbleed Fix for 64-bit Windows BBj ODBC Driver

Language/Interpreter

51

http://www.basis.com/kb-openssl-and-basis-products
http://links.basis.com/heartbleed
http://links.basis.com/heartbleed
http://blog.meldium.com/home/2014/4/10/testing-for-reverse-heartbleed
http://links.basis.com/tc13-ami
http://links.basis.com/heartbleed

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

he “Guiding Principle of Replication” at BASIS is to use the fewest resources necessary to continuously back up the data
as requested by the user and remain as current as those resources will allow. Clearly, some resource use is required, but
the impact on user operations should be as small as possible and be imperceptible to the user group. In pursuit of this goal,
BASIS added these improvements to shrink replication resource usage:

 	 • Reduced the number of open files on both the target and the source
 	 • Optimized the copying of small files and large string files from the source to the target

These changes greatly improved the efficiency of a replication job with large numbers of files to copy from the source to the target,
such as when there is no initial rsync or when creating or changing a large number of string files. This article takes a closer look at
these improvements.

Caching File Opens on the Target
The first improvement was to tighten control over the number of files open on the replication target. A replication target needs a file
open in order to make such changes as writing or removing records. However, replication operations are a stream and encompass
changes to potentially many files. It is much too expensive to open and close a file every time there is a file operation. After all, the
user might be in the process of adding a million records to the same file, and opening and closing the file a million times (once for
each record) is much too slow.

To resolve the issue, we keep a cache of recently used files on the replication target; the first operation on the file will open it and
subsequent operations will find it already open and ready to modify. If the file has not had any operations for a couple of minutes,
we go ahead and close it in order to avoid having too many files open. Unfortunately, this does not help if users were modifying
many files at the same time. If users modified a thousand files within a couple of minutes, then the replication target could open all
thousand files at the same time, which would lead to running out of file handles. BASIS resolved this by adding a restriction on the
total number of open files in the cache. In addition to closing files when they have not been used for a couple of minutes, the total
number of open files is limited to prevent overwhelming the replication target with open files even if there are near simultaneous
changes to many different files on the source.

Replication Redux

By Chris Hardekopf
Software Engineer

DBMS

52

 T

Limiting Open Files on the Source
BASIS also made changes to minimize the number and duration of open files on the
replication source. Unlike the target, the replication source only needs to open files
in order to check for OS-level changes and to copy files to the target. We record
simple data file modifications directly to the replication log and send them on to the
target without needing to open the file. However, when we detect OS-level changes
to a file, we need to open the file to check the contents against the target and copy
it when necessary. Originally, we would open all of the source files in order to check
for changes and if we required a new copy of a file we would keep that file open until

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

For more information, refer to:
 • Replication Introduction in the online documentation
 • Anatomy of a Replication Job in The BASIS International Advantage

DBMS

53

the copy completed. Unfortunately, this could lead to problems. It could cause each file to remain open for an extended period of
time, using up open file handles and preventing it from being deleted.

We changed how the copy works so that instead of keeping the file open until it was copied, we immediately close the file and add
the name to a queue. When we are ready to actually copy the file, we attempt to open it again just for the duration of the copy. This
means that only a few files are open at a time and the user is able to delete the file while it is waiting for the job to copy it since it
will only be open for the minimum time necessary for the check and thereafter for the actual copy.

Copy Whole Files
Copying files from the replication source to the target is normally performed a block at a time for string files, or a record at a
time for data files. This lets us efficiently copy large files as well as allow file modifications during the copy process. However, if
the file is small enough, we now copy the whole file in a single operation. It is much more efficient to simply load the entire file
into memory and send it to the target. This process avoids extra communication between the source and target about the file,
minimizing the amount of time the file is open on the replication source. However, copying large files in this manner would take
too much time and use too much memory and network bandwidth in loading the entire file into memory and sending it to the
target.

Add Checksums to Minimize Traffic
Occasionally, a user will put a large string file into a replication job, requiring the replication source to copy the file to the
target. If the file does not exist on the target, the job must copy the entire file. However, sometimes the large file already
exists on the target and users are only modifying the source file in relatively small ways. For example, when users append to
log files and only change the end of the file.

In order to handle such cases better, BASIS changed large string file replication to get checksums for blocks of the file that
already exist on the target and only copy the parts of the file that have different checksums or that do not already exist on
the target. Now, instead of just copying the file from scratch as it used to, the replication target iterates through the target file
gathering a list of checksums that it can send back to the replication source. The replication source then iterates through the
source file it is copying, comparing the checksums in order to determine which parts of the file have actually changed. The
replication job only needs to send the changed parts of the file over the network to the replication target. This process requires
that the replication target read the target file, and the replication source still needs to read the entire source file, but it has the
potential to greatly reduce network traffic and speed up the file copy for minor changes (such as appending) to large string files.

Summary – Faster, More Robust, More Efficient
At BASIS, our belief in the concept of continuous improvement made these recent changes to replication an easy target, utilizing
the feedback from the community and our own research helped us make the process as efficient and unobtrusive as possible.
We look forward to finding more ways to improve the performance and reduce resource usage into the future.

Sit back and enjoy a
30-minute presentation

with BASIS!
links.basis.com/javabreak

http://links.basis.com/javabreak
http://documentation.basis.com/BASISHelp/WebHelp/dbms/replication_intro.htm
http://documentation.basis.com/advantage/v15-2011/11replication.pdf

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

igital dashboards provide a graphical view of business data, allowing anyone, especially owners and management
executives, to quickly and easily make better informed decisions. To capitalize on the value of visual data presentation,
the AddonSoftware® development team undertook the task of offering the value-added reseller (VAR) community a
representative, well-rounded sampling of ERP widgets that would both pique prospects’ interest as well as supply a

prototype that VARs could use for their own vertical development. To that end, AddonSoftware by Barista® version 14.0 not only
debuts a fully functional dashboard (Figure 1), but also provides a solid foundation for customization.

 D

54

Building Blocks

AddonSoftware's Digital Dashboard Takes Off

Figure 1. AddonSoftware Dashboard showing widgets in the sales category

By Christine Hawkins
Software Developer

By Carla Johnson
Software Developer

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 55

Building Blocks

The AddonSoftware Dashboard includes examples of most of the new BASIS Dashboard Utility's widget types,
graphically displaying key data in an easily digestible manner. In addition, version 14.0 showcases the dashboard's
flexibility with an embedded widget (Figure 2) on the Accounts Receivable Customer form. In the AddonSoftware
tradition, all the code that makes this magic happen is available to the VAR community.

Figure 2. Customer form contains an embedded pie chart showing aged balances

This article unearths what we learned during our development cycle. Read about our design process and the
aspects of development that were both easy and challenging, and get a peek “under the hood” at the technical
details.

Getting Started
The AddonSoftware team was excited to participate in the development of the new BASIS Dashboard Utility and
have the opportunity to work closely with BBj® engineers to help shape the dashboard’s functionality and direction.
As the BBj team developed the utility, we molded the mechanics to AddonSoftware – always keeping in mind our
goal of assisting both VAR developers and resellers. AddonSoftware inherits all the functionality of the Dashboard
Utility, including the ability to pop out individual widgets for a zoomed-in view, save or email a widget image,
manage refresh options, and customize the dashboard layout.

With so much inherited functionality, we were able to focus on how to make the best use of the Dashboard Utility
within AddonSoftware and the Barista Application Framework. We started by brainstorming ideas on which widgets
to include in our initial release. To meet our goal of delivering a dashboard that is both customer-facing and a
prototype for VARs, we identified some initial requirements. Widgets needed to

 • Offer an eye-catching display

 • Provide an effective presentation of data relevant to a prospect’s business

 • Reference data that would lend itself to a graphical depiction

 • Be appropriate for the data being collected

Takes Off

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc56

Building Blocks

As we considered these requirements, AddonSoftware’s General Ledger and Sales Analysis data tables came to the fore as
a "widget-rich" environment. Our design plan included a broad selection of widgets to benefit both prospects and VARs as
shown in Figure 3.

Figure 3. AddonSoftware Dashboard showing widgets in the ‘Accounting’ category

Once we defined the core set of widgets, we turned our efforts toward designing a process to launch the dashboard in
accordance with the Barista security model so the availability of widgets would tie to the user's security role. We also
considered AddonSoftware's modular structure so that the dashboard would only create widgets for installed modules.

Understanding the Dashboard Utility
Just as the AddonSoftware Dashboard has laid the foundation for VARs and resellers to demo the new dashboard and
customize or expand on it, the Dashboard Utility paved the way for the AddonSoftware team. Not only could we refer to the
Dashboard Utility Overview in the online Help to learn about the various aspects of the utility, but we also got a boost by
having a functional demo dashboard with access to the source code. And all of these resources – the online documentation,
the BBj Demo Dashboards, and the Addon Dashboard – are available to anyone developing with BBj!

We began by taking the demo dashboard for a test drive to acquaint ourselves with its function, capabilities, and available
widget styles. We analyzed the underlying code, and found that we could leverage pivotal routines – specifically, the logic
for constructing the dashboard, its categories, and its individual widgets.

The methods for constructing the various widgets and setting their properties are consistent and intuitive, so the code was
easy to understand and propagate. Furthermore, we found that because the Dashboard Utility provides defaults for colors,
fonts, etc., we could create a widget very quickly with just a few parameters. We could set and/or change many additional
properties if we chose, but didn’t need to worry about a myriad of details to get up and running.

Implementing the Dashboard in AddonSoftware
Since we could borrow the core code from the demo dashboard to get the basics for AddonSoftware's dashboard in place,
we were free to focus on the application-specific challenges. Some of these challenges were specific to widgets while others
applied to the overall design and, once solved, would be in place for the benefit of others doing dashboard development.

Look and Feel
In terms of overall design, we had to think about the general look and feel of the dashboard. While it was tempting to use
different types of widgets, colors, and fonts, and to experiment with rendering the data as a flat vs. 3D graphic, we opted to
let the utility's defaults set the theme. This decision made our job easier and also provided a more consistent look.

http://links.basis.com/dashdocs

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 57

Building Blocks

Launch
Since we needed the ability to launch the dashboard either inside the Barista MDI or via the browser user interface (BUI), we
added code to update the progress meter in Barista's menu panel, and perform other miscellaneous initialization tasks to facilitate
a BUI launch.

Security
Barista’s security is tied to menu items; therefore to address security considerations, we created hidden menu items for each
widget (Figure 4), not just for the dashboard as a whole. This gave us the infrastructure to set Barista security options on a per-
widget basis to tailor each user's version of the dashboard to their security permissions (Figure 5). Without the granularity provided
by assigning menu items to each widget, security could only be applied at the level of the dashboard as a whole – a user could
either access all of the dashboard or none of it. Clearly, that would not have been an optimal solution.

Logic
Last, but not least, we added code to construct
widgets only if the associated AddonSoftware
application module was installed. Adding this
logic brought the AddonSoftware Dashboard
into alignment with AddonSoftware standards
for module integration.

Combining all of these design features made
the AddonSoftware Dashboard seem right at
home within the Barista framework rather than
having the appearance of an external bolt-on.
Having addressed these issues, we turned our
focus to the design of our individual widgets.

Figure 5. Barista Security Administration controls access to widgets based on user role

Figure 4. Hidden menu items for each widget
provide a link to Barista security

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc58

Building Blocks

Setting Design Standards
At the widget level, we found that even though we had to revisit certain design questions with each widget, the process
became easier after the first time through, and was even faster by establishing some standards.

The first question in designing our widgets was, “Which of the many widget types would best depict the data we wanted to
display?” The answer was largely an educational step, and the team went to the Internet to learn about charting. For example,
consider the two representations of sales rep data shown in Figure 6 and Figure 7. Shown as a line chart, the individual sales
amounts for each rep display clearly. The same data shown as a stacked area chart places the reps' sales amounts atop each
other, so you also have a visual of total sales.

It is also important to understand that different widgets require different recordset structures, so we had to decide on the
widget type before we set about writing the stored procedure (SPROC). Figure 8 shows examples of the recordsets needed
for a pie chart vs. a stacked area chart.

Figure 8. Recordset for sales rep pie chart (left) and stacked area chart (right)

Since SPROCs are written with BBj code, we had the freedom to write them using either SQL or native file access. We wrote
a few selected SPROCs with both kinds of access, then REM’d out one or the other and ran traces and/or called the SPROCs
from within the Enterprise Manager to compare the performance. In general, if the desired data came from only one or two
tables and was already in a normalized form and adequately indexed, SQL worked great. Otherwise, we found we could get
our return recordset more quickly using native file access. That principle made it faster to design and code the remaining
SPROCs.

Figure 9. Filters allow users to change the widget data dynamically

Adding Filters
Another widget-specific consideration was whether
to add filters so the user would have options for
tailoring the result. For example, the Sales category
contains a widget showing the AddonSoftware
Accounts Receivable Drilldown Sales Report.
When run stand-alone from the menu, the user
establishes the month and year for the report. In
the dashboard version, the widget initially appears
based on defaults set out in the code, and the user
can then select the period of their choice from the
month/year filters (Figure 9).

Figure 6. Line chart presents individualized data for Top
Salespersons from Sales Analysis

Figure 7. Top Salesrep total sales by period in a Stacked Area Chart calls out the totals for
each period

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 59

Building Blocks

Delivering our Final Product
At this point in the development, we had sailed over most of the hurdles, resulting in minimal ramp-up time for VARs wanting
to demo or modify the AddonSoftware Dashboard. By following a process similar to our undertaking, a VAR’s step into the
new world of graphical data display should be straightforward. The general process is the same as any AddonSoftware
development.

 1. Define your goal.

 2. Familiarize yourself with the user interface.

 3. Review existing code logic pertaining to your goal.

 4. Follow the examples provided when making your custom logic.

 5. Consult the BASIS Dashboard Utility documentation, as needed.

Read on for some of the more technical details of our implementation.

Dissecting the Components
As an overview, the BASIS Dashboard Utility provides the underlying widget and dashboard objects and contains a number of
components. Refer to the links at the end of this article for more information about the Dashboard Utility that is published in this
issue and the online documentation.

Barista handles framework functionality such as security, document warehousing, STBLs, sysinfo, localization, and masking.
AddonSoftware leverages these primarily via a program named adx_aondashboard.aon, a launcher program that contains all of
the logic to interface the AddonSoftware data with the BBj and Barista components. To help with customization efforts, this
program includes examples of the majority of widget types, each of which utilize calls to SPROCs to collect data. Its easy-to-
follow structure lends itself to customization.

The flow of adx_aondashboard.aon is essentially this:

 1. Initialize various processes and variables, including a check for BUI.

 2. Create the dashboard.

 3. For each category, create the category tab control.

 4. For each widget, if security allows it and the associated module is installed, create the widget.

Creating the dashboard and its categories is very straightforward – just two lines of code each. To illustrate, Figure 10 shows
the code snippets that create the dashboard itself and the accounting category.

Figure 10. The code that creates the Dashboard and the Accounting category

Initially we borrowed the code for creating individual widgets from the BASIS Demo Dashboard, altered it for AddonSoftware,
and then wrapped it in the logic to create the widget based on the user's security and whether or not the requisite module is

http://documentation.basis.com/BASISHelp/WebHelp/bbutil2/dashboard.htm

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

installed (Figure 11). Note also that the user-facing text – the dashboard title, category names, widget titles, filter contents,
etc. – are localized to display the appropriate text for the user's locale/language.

60

Building Blocks

Figure 11. Widget construction code wrapped with tests to check security and application installation

To simplify widget creation, we developed a naming convention for widgets. We then broadened the convention to add consistency
across the various components (SPROCs, Barista menu ID's, widget names, thumbnail images, and filter selection events). Per
AddonSoftware standards, AddonSoftware Dashboard names include a two-character module ID and descriptive acronym. For
clarity, the last four characters are an underscore followed by a three-character widget-type abbreviation as shown in Figure 12.

Embedding a widget in a form like we did on the ‘AddonSoftware Customer’ form (Figure 2) uses code that is very similar to adding
a widget to the dashboard, except we used the EmbeddedWidget classes as shown in this excerpt from the ‘After Show (ASHO)’
callpoint (Figure 13).

Figure 12. Three-character widget types used
in Addon Dashboard naming conventions

Figure 13. Callpoint code in Addon's Customer form constructs an embedded pie chart widget

Comparing Figure 11 with Figure 13, you’ll notice numerous points of similarity, including the use of the getTranslation method to
localize the user-facing text in accordance with AddonSoftware’s multilingual capabilities.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

Tips on Customizing
VARs wishing to customize the AddonSoftware Dashboard already have a roadmap in place to follow. We've done the
heavy lifting so developers don’t have to! Here are some things to keep in mind if you want to build your own dashboard or
modify the standard.

	 • Customizations should pay attention to the handling of security as demonstrated in adx_aondashboard.aon.

	 • Making use of the same/similar naming conventions that AddonSoftware implemented in the standard product 	
	 will make it easy to identify/locate the various components (SPROCs, Barista menu ID's, thumbnail images, etc.).

	 • Begin by reviewing the data underlying the widget you want to create so that you can decide on the right widget 	
	 for the job and whether you'll want to use SQL or native file access to build your recordset.

	 • Don't forget that each SPROC needs to be defined in Enterprise Manager. AddonSoftware does this with
	 the adx_buildsproc.aon utility that runs with the first launch of AddonSoftware (via Barista's Auto-Launch 	
 	 mechanism). VARs can create a similar auto-launch process to make sure SPROCs are re-defined after new 	
	 installations or upgrades.

Summary
The BASIS Dashboard Utility throws the data visualization doors wide open and AddonSoftware's dashboard
implementation gives VARs not only a ready-made solution for demonstrating graphical capability in the application,
but also a great tool to use as a springboard for customization.

61

Building Blocks

• Refer to the following resources for deepening your understanding of AddonSoftware’s Digital Dashboard
 • Dash Boredom With the Dashboard Utility
 • Easier Decision Making With the Dashboard Utility
 • Dashboard Utility Overview in the online documentation

• Download and run the code samples

http://links.basis.com/14code
http://documentation.basis.com/BASISHelp/WebHelp/bbutil2/dashboard.htm
http://links.basis.com/dasheasy
http://links.basis.com/dashutility
http://www.basis.com/training

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

ou finally finished writing your BBj® application, and it’s time to put it out in front of your end users. Or maybe it’s not –
how do you know when software really is ready for public consumption? The answer may be “When the scheduled
release date arrives,” or “When the boss says it’s time,” or maybe even “When we’ve put it through its paces and there
are no more significant bugs to fix.” Sure, we all know that any good software development life cycle includes time for

testing, starting with unit testing and ending with some form of system or acceptance testing. But how much time and money
can you afford to invest in testing? How do you use your limited testing dollars to get the most bang for your buck?

Common sense says that the earlier you find a bug the easier and cheaper it is to fix it, and our experience at BASIS
supports this conclusion. But this is only helpful if you don’t have to spend large amounts of money or time in order to find
those bugs early. So what you need is a relatively cheap tool to help you find bugs in your BBj code as early as possible.
How about finding bugs as a code change creates them?

62

Development Tools

Test for Success With BBj Unit Test

By Jerry Karasz
Software Architect

Sebastian Adams
Software Developer

While you are creating a new BBj application, wouldn’t it be nice if you could just
push a button and find out what works and what doesn’t? What would you give to
have a series of tests that you can run any time, over and over, quickly turning out
a clear and concise report of which passed and which failed? Unit testing offers an
opportunity for just such a return on even a small investment. But unit tests are not
free – somebody has to write every one of them. The return comes once you have
written your unit tests. You can run them over and over again, not only to find bugs
as you are developing your code, but even afterwards to find out that you broke
something in your code with that latest bug fix.

Unfortunately, unit testing has never before been an option for BBj developers – until
now. BASIS is proud to announce the first step in providing a BBj Unit Test framework
that you can use to develop and run unit tests for your BBj code – the BBj Unit Test
Eclipse plug-in. For those of you familiar with CppUnit, JUnit, or any of the other xUnit
frameworks, you will see a lot that you are familiar with here.

 Y

http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/XUnit

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

What Exactly is a Unit Test?
In BBj Unit Test, unit test is a method on a class that returns nothing (it has a void return type) and announces its success or
failure through the special Assert methods it calls (more on the Assert methods later). In order for the BBj Unit Test framework to
recognize your method as an official “unit test” and be able to run it, your method also needs to be flagged as a unit test method by
making the line of code immediately preceding the method declaration an annotation remark, REM @Test (case insensitive). For an
example of a simple unit test method, see Figure 2.

63

Development Tools

Preparing for Unit Testing
Although this plug-in is still in its
infancy, it does provide the basis for
a good unit testing strategy. Let’s
look at where to get it and how to
use it.

Getting the Plug-in
Go to the BASIS Eclipse page and
choose the BBjUtilities “Release”
URL. Install according to the “BASIS
AND THIRD PARTY PLUG-INS”
instructions. Eclipse will download
any newer version when it checks for
updates.

Creating Unit Test Code
Suppose you have a BBj
project named MathProj that
contains a BBj code file named
MathOperations.bbj as shown
in Figure 1.

MathOperations is a simplistic class
and offers just enough methods
to be useful but not enough to
complicate this example. It has
methods defined to do multiplication,
addition, subtraction, and division.
But does it do them correctly? To
find out, let’s set up some unit tests.

Figure 1. A ‘BBj Project’ that contains a simple mathematics class

Figure 2. An example unit test method

Where do I put my Unit Test Code?
Unit test methods such as addTest() must be part of a
unit test class. We could create a class directly in the
MathOperations.bbj file to hold all of our unit test methods,
but once MathOperations and our tests get large, this will
become harder to manage, and running our tests in Eclipse
will conflict with running the regular .bbj file. Besides, it is
considered poor programming style. For these reasons, the
BBj Unit Test plug-in requires test classes to be in a separate
file in the same BBj project with a specific extension: .bbjt. We also recommend you name the test class and file something intuitive
so that the relationship between the file being tested and the unit test file is obvious. For our example, let’s name our unit test class
TestMathOperations and our unit test file TestMathOperations.bbjt, and put TestMathOperations.bbjt in the same MathProj
project (see how this looks in the BDT Navigator view shown in Figure 1). Starting the unit test class name and filename with
“Test” is a convention that we recommend, but it is not required.

How do I Structure my Unit Test Class?
In this example, we will probably need an instance of the
MathOperations class in every unit test method we write,
because that is what we are testing. We could allocate
a MathOperations variable in every unit test method, but
that seems redundant and a lot of work. We could put in a
field that is accessible to every unit test method such as
field private MathOperations mathOperations!,
and then our class would look something like Figure 3.

Figure 3. A partial BBj Unit Test class, TestMathOperations

http://www.basis.com/eclipseplug-ins#BBjUtilities
http://www.basis.com/eclipseplug-ins#BASIS-PLUGINS
http://www.basis.com/eclipseplug-ins#BASIS-PLUGINS

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

The @BeforeClass is the right place for any initialization including preparing globals like STBL values, opening file channels,
or any other preparation your tests require.

But what if we have setup code that needs to be executed before each unit test is run? Try @Before. Or cleanup code that
needs to be executed after each unit test is run? Try @After. It turns out that a need for “setup” and “cleanup” code is pretty
common, so BBj Unit Test offers you two different times to run setup and cleanup. Figure 5 lists the recognized annotation
remarks and their purposes, which includes both setup and cleanup options.

Figure 5. Annotation remarks for unit testing

How do I Determine Success or Failure in my Unit Test?
But how do we actually determine success or failure in each @Test method? Currently, BBj Unit Test offers a number of
methods to determine this (see Figure 6).

					
		

Figure 6. Success and failure methods

With the exception of the Expect() method, all of the methods listed in Figure 6 also offer a second method signature that is
identical to the one shown but that takes a BBjString errorMessage$ as the first argument. The errorMessage$ allows you
to specify a particular failure message to report if the invocation fails.

64

Development Tools

But that won’t work ‒ we need a way to initialize field mathOperations!
to an instance before we can use it, and that needs to be done exactly
once before we start running our tests.

If we just had some way to run some code before we executed any
of our unit tests. BBj Unit Test gives us just that ‒ the ability to define a
“setup” method that it calls exactly once before any of our unit tests run
using the @BeforeClass annotation remark. We can add a method to
TestMathOperations that will do exactly that. Our new method named
setup() is shown in Figure 4. Figure 4. Setup done exactly once before any of our unit tests run

Annotation		 Purpose

@BeforeClass		 Run this method once before running any @Before or @Test methods (class setup)

@Before			 Run this method immediately before running each @Test method (method setup)

@Test			 Run this method as an actual unit test

@After			 Run this method immediately after running each @Testmethod (method cleanup)

@AfterClass		 Run this method once after running all @After and @Test methods (class cleanup)

@Ignore			 Do not run this method as a unit test (it shows as ignored in the test results)

Method							 Explanation

Assert.Equals(BBjNumber A, BBjNumber B)			 Successful if the number A equals the number B; fails otherwise

Assert.Equals(BBjNumber A, BBjNumber B, BBjNumber Delta) Successful if the number A equals the number B within +/- Delta; fails otherwise

Assert.Equals(BBjString A$, BBjString B$)		 Successful if the string A$ equals the string B$; fails otherwise

Assert.Equals(Object A!, Object B!)			 Successful if the reference to object A! equals the reference to object B!; fails otherwise

Assert.NotEquals(BBjNumber A, BBjNumber B)		 Successful if the number A does not equal the number B; fails otherwise

Assert.NotEquals(BBjNumber A, BBjNumber B,BBjNumber Delta) Successful if the number A does not equal the number B within +/- Delta; fails otherwise

Assert.NotEquals(BBjString A$, BBjString B$)	 	 Successful if the string A$ does not equal the string B$; fails otherwise

Assert.IsNull(Object obj!)				 Successful if the object obj! is null; fails otherwise

Assert.IsNotNull(Object obj!)				 Successful if the object obj! is not null; fails otherwise

Assert.Fail()						 Always fails

Assert.Expect(BBjNumber exceptionA, BBjNumber exceptionB) Successful if the exception number exceptionA thrown equals the exception number 	
							 exceptionB; fails otherwise

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 65

Development Tools

For the sake of simplicity, we will focus on the two
simplest functions:
 Assert.Equals(BBjNumber, BBjNumber),
 and
 Assert.Expect(BBjNumber, BBjNumber).

Assert.Equals(#mathOperations!.add(8,8),16)
shows how to test the MathOperations.add()
operation when we know the BBjNumber value we
will get if the code is successful. In this case, we
know that if we add 8 to 8 we will get 16, and our unit
test will report success. If, however, MathOperations.
add() returns any value other than 16, the unit test
will fail.

Assert.Expect(#mathOperations!.div(20,0),93)
shows how to test the MathOperations.div()
operation under a condition when we expect it to
throw a particular exception (93 in our example).
In this case, we know what should happen if we try
to divide any number by 0. The code should throw
an exception 93, and our unit test should report
success (because we got the expected exception).
If, however, MathOperations.div() returns any
value without throwing an exception 93 or throws
any exception other than 93, the unit test will fail
(because we expected an exception 93 but did not
get it).

Putting All of the Pieces Together
Let’s go ahead and define a full @Test method
for each of MathOperations’ methods: addTest(),
multTest(), subTest(), and divTest(). Our unit test
class now looks something like Figure 7.

You are not limited to testing only class operations
like mathOperations!.div(). You can also invoke
legacy functions like CALL as shown in Figure 8. Figure 7. A complete example BBj Unit Test class, TestMathOperations

Figure 8. An example of testing legacy code

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

Running Unit Tests
Now that we have defined our tests, it’s time to run them. There are a number of ways to do this, but to keep it simple
we’ll run our tests from inside of the editor window. With the TestMathOperations class open in a code editor window,
right-click anywhere in the code and select Run As > BBj Unit Test. Our tests all run, and the BBj Unit Test View appears as
shown in Figure 9.

Figure 9. The results of successfully running TestMathOperations’ unit tests

If we wrote all of the TestMathOperations unit test code correctly, and we wrote all of the MathOperations methods
correctly, then BBj Unit Test reports success and we get the nice green result display shown in Figure 9.

If, however, we made any coding errors in any of our unit test methods, we get a red result display with an ‘Execution Error’.
The view provides additional information to help us fix our mistake: the name of the offending unit test method, the line in
that method that failed, and the matching error message as shown in Figure 10.

Figure 10. Execution errors in our unit test methods

If we wrote all of the TestMathOperations unit test code correctly but one MathOperations method works incorrectly, then
BBj Unit Test will report a failure for that test and we get a red result display. This error will show as an ‘Assertion Error’
indicating the name of the offending unit test, the assertion in that method that failed, and an error message to help us see
what went wrong as shown in Figure 11.

Figure 11. An assertion error in addTest()

66

Development Tools

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

If we made any mistakes, we now have to fix our problems and test again, and again ... and again. Remember, the goal of
running our unit tests is to (eventually) see green, to have all of our unit tests run successfully. If we have written our unit
tests to cover all of the necessary functionality, then success will mean just that – the code we tested (the MathOperations
class) works the way we want it to. And we are ready to move on to our next coding task.

Summary
Unit testing is very valuable in determining whether or not a unit (such as a class or a function) works the way we want it to,
to tell you when you are (finally) finished. One thing you may not have realized, though, is that the set of automated tests
you just created can now be run again any time you modify your code or you prepare to release it. The industry calls this
process Regression Testing and it can help you find any side effects or problems you may have inadvertently created before
a release. The value of unit testing is not only in helping you know when you are finished developing, but it is also in helping
you after that to know that everything is still working perfectly!

The BBj Unit Test Eclipse plug-in is free to use with the BDT Eclipse plug-ins and is built to be extensible, but it is a
framework that is only in its infancy. It offers a number of useful methods to help you to unit test your programs, but there
is still a great deal more functionality that we can add if you would find it helpful. So give it a try and send us your feedback
on what you would like to see added next to BBj Unit Test. Help us to help you turn out better Business BASIC programs for
your customers.

67

Development Tools

• Try out the BBj Unit Test plug-in today by installing BBj Utilities
• Download and run the code samples

http://en.wikipedia.org/wiki/Regression_testing
http://links.basis.com/eclipse
http://links.basis.com/14code
http://elearning.basis.com/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

Teresa Dominguez
Technical Support Analyst

The Anatomy of BBj

68

Language/Interpreter

BBjServices
BBjServices offer the services of a
data server (i.e. it listens on a given
port for BBj Data Server connection
requests) and also offers the services
of an app server (i.e. listens on a
different port for BBj App Server
connection requests). When the
App Server port receives a request,
BBjServices starts an interpreter to
process the request, but because the
Interpreter and the Data Servers are
running in the same process, they are
able to communicate directly rather
than across a socket. This provides
a significant performance advantage
over the configuration in which the
Data Server and the App Server are
running in separate processes.

Once BBjServices are running, users
can access the services it offers in the
same way that they would access the
BBj Data Server and BBj App Server
services if they had started either in
separate processes. Although these
services can be accessed in a manner
that is 'pure Java,' the most common
access is by typing BBj at a command
prompt.

s a new BBj® user, you may find the landscape of participating processes
and services confusing. Exactly what did I install on my server? What do all
of these processes do anyway? In order to provide a firm grounding in the
basics, let’s look at a high-level overview of BBj and its components.

At the Heart of BBj
BBjServices is the core component of BBj. It provides for central control and access
to all data and BBj programs, and provides local and remote file access, SQL
processing, administration, user access, interpreter access and thin client support
through these components:

 • BBj Data Server – Admin Server, Filesystem Server,
 SQL Engine, and the BBj PRO/5 Data Server

 • BBj App Server – Interpreter Server, Terminal Server,
 Thin Client Server, Thin Client Proxy Server, Port
 Request Server, and the Jetty Web Server

See Figure 1 for an overview of the BBj components as they reside on the server
“computer” with the remote client elsewhere. The BBj Data Server components
appear in blue; the BBj App Server components are in green; client components
are in yellow. Three core components appear in white – BBjServices, Enterprise
Manager, and the License Manager.

 A

 Figure 1. The BBj components and their relationships

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 69

Language/Interpreter

BBj App Server

Enterprise Manager
BBjServices is itself controlled or managed by an end user component, the Enterprise Manager (EM). The EM allows BBj
administrators to configure and manage all the servers that make up your BBj enterprise. Administrators can configure
the various servers, add users, define and maintain databases, configure database level permissions, setup and manage
replication jobs, schedule tasks, create triggers, configure stored procedures, or any number of other tasks.

Two versions of the Enterprise Manager are available: a browser-based version and an Eclipse plug-in version. Installing
BBj also installs a shortcut for the browser EM on each computer titled “Browser EM.” You can also enter the URL
http://<localhost>:8888/bbjem/em (replacing <localhost> with the hostname for your server) directly in a browser
on any computer with network access to the BBj Server. The Eclipse EM plug-in is available to download and run within
the Eclipse IDE development tool. Follow the installation and setting up instructions for the Eclipse version on the Eclipse
Plug-ins web page.

BASIS License Manager (BLM)
The BASIS License Manager (BLM) is a licensing control process that checks for and serves up a valid license each time
users launch or connect to a BASIS product. The BLM then monitors the license based on its expiration date.

BBj Data Server aka BASIS DBMS

Admin Server – The Admin Server is the server that does the following:

 • Interacts with the BBj Enterprise Manager

 • Allows for the configuration of BBjServices and network ports, and the logging of information

 • Provides database configuration and user administration

Filesystem Server – The Filesystem Server handles access to all of the file types that BBj supports, both local and remote.
It also manages data replication and change auditing.

SQL Engine – The SQL Engine provides server-side execution and processing of SQL statements. This allows for more
efficient processing of multithreaded SQL statements than if the SQL Engine was part of the client-side ODBC driver. The
SQL Engine uses an intelligent query optimizer that implements optimization strategies, including those for statements
containing one or more ORs in WHERE clauses.

BBj PRO/5 Data Server – The BBj PRO/5 Data Server provides access to the BBj file system from Visual PRO/5® and
PRO/5® clients replacing the PRO/5 Data Server®. Using the BBj PRO/5 Data Server users can now run their application
with PRO/5, Visual PRO/5, and BBj simultaneously without data or licensing conflicts. This allows all clients to take
advantage of BBj features such as directly accessing BBj ODBC data sources through the BBj SQL Engine, using stored
procedures, triggers, database performance analysis, using extended SQL syntax, performing data replication and change
auditing, and more.

Interpreter Server – The BBj Interpreter Server starts interpreter sessions on the clients’ behalf. The BBj Interpreter
is the parser and interpreter of programs written in the BBj language. It supports multiple-line IF statements, non-line
number programs, embedded Java code, reserved words, register/callbacks, dynamic limits and memory allocation, and
ASCII programs.

Terminal Server – The Terminal Server provides a TermConsole BBj Interpreter session under Unix. It also provides IO
interpreter sessions under Unix and Windows.

Thin Client Server – In thin client mode, the Thin Client Server runs the application specified by the client and keeps in
communication with the thin client for user activity and additional processing. Speed is the primary goal in running all of
the interpreter sessions in one JVM. It would be very inefficient to run a JVM for each session because the majority of the
speed loss in Java occurs in the loading of the JVM.

Thin Client Proxy Server – The Thin Client Proxy Server (TCPS) provides access to Thin Client Servers from a local BBj
executable. The TCPS works with the Port Request Server provide for the efficient management of JVM’s used by the thin
clients running on local clients.

Port Request Server – The Port Request Server interacts as a local server with the Proxy Manager Server to provide
port information about the various servers to a BBj session when it starts.

Proxy Manager Server – The Proxy Manager Server maintains a list of currently active Thin Client Proxy Servers running
on the local machine and interacts with the Port Request Server to insure a BBj Thin Client session connects correctly.

Jetty Web Server – The Jetty Web Server is a configurable web server. It provides a powerful tool to bring your BBj
applications to web-based clients. Jetty-based applications can be BUI applications or JNLP applets such as Web Start
applications. The Jetty Web Server also supports web services and comes with two built-in web services: the BASIS
Update Service (BUS) and the demo Chile Company Ordering System (CCOS).

http://links.basis.com/eclipse
http://links.basis.com/eclipse

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

Clients
BBj Thin Clients connect to BBjServices and request that it run a BBj program on its behalf. BBj Thin Clients keep in
communication with BBjServices and display the requested program's interface – either character user interface (CUI), graphical
user interface (GUI), or browser user interface (BUI) – on the client machine. With BBj Thin Clients, BBj users can run any
BBj program in thin client mode! You can also use BUI in a web browser on a variety of devices and machines. In this type of
configuration, you can run a BBj application over the network without even having BBj installed on the user's machine or mobile
device!

Database Drivers
You must use a driver to access the BASIS database management system (DBMS). This driver communicates with the BASIS
database, giving it instructions to perform. BBj includes two drivers to access the SQL Engine; an ODBC (Open Database
Connectivity) Driver and a JDBC (Java Database Connectivity) Driver.

BBj ODBC Driver
The BBj ODBC Driver provides an SQL interface to the BBj File System for third party applications running on Microsoft
Windows. In previous releases of the ODBC Driver, the SQL process ran on the client. With the BBj ODBC Driver, the SQL
engine is now part of BBjServices on the server, which makes the client-side driver very thin (small).

BBj JDBC Driver
The BBj JDBC Driver provides an SQL interface to any third party Java application running on any platform BBj supports.

Developer Tools and Application Building Blocks
Eclipse Plug-in – In order to develop BBj programs to run with BBjServices, use the Business BASIC Development Tools
(BDT) plug-in for Eclipse. If you download and run BDT’s CodeEditor, you will be able to create, edit, and debug BBj program
code. Two new Eclipse plug-ins – AppBuilder and WindowBuilder (WB) – will be fully functional and available with the release
of BBj 15.0. Leveraging the power of the Eclipse framework, these plug-ins offer a number of user-friendly utilities to make your
development faster and easier.

 • CodeEditor – provides an environment for BBj developers to create, edit, and debug their BBj code

 • WindowBuilder – provides an easy-to-use rapid application development (RAD) GUI tool for BBj developers to do window
 design and layout (available in BBj 15.0)

 • AppBuilder – provides a RAD GUI tool for BBj developers to create, edit, and manage event handlers for the UI created in
 WindowBuilder (available in BBj 15.0)

Barista – a GUI-only data dictionary-driven rapid application development environment and runtime engine, facilitates:

 • New GUI application development

 • Conversion of CUI applications to GUI

 • Modernization of existing GUI applications

Refer to the Barista® documentation for a complete description of its features and components.

AddonSoftware – a set of enterprise resource planning (ERP) building blocks, is a full-featured and fully integrated business
management solution powered by Barista and coded in BBj. It includes the following modules:

 • Accounting – Accounts Payable, Accounts Receivable, and General Ledger

 • Distribution – Inventory Control, Sales Order/Invoice Processing, Purchase Order Processing, and Sales Analysis

 • Manufacturing – Bill of Materials and Shop Floor Control

Getting Started
To get started, download BBj from the BASIS download web page and choose only BBj or BBj plus the Barista Application
Framework, with or without AddonSoftware®.

What’s Next?
BBj continues to offer a number of flexible tools and options for the end user, and for the developer to design and manage
a computing solution that fits the needs of their customers. This was a high-level overview of the landscape of participating
processes and services that make up BBj to clearly explain what you installed on your server and what all of these processes do
for you and your customers.

70

Language/Interpreter

http://www.basis.com/barista-overview
http://www.basis.com/bbj-download

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

ack in late 2008, when the BASIS engineers were in the midst of writing the LaunchDock Utility, they frequently found
themselves dealing with images in application code. Oftentimes, the source image was almost what they needed, but
didn’t quite meet the application’s criteria exactly. If only there was a quick and easy way to modify the source image
programmatically, either at run-time or in the form of a batch image processing utility.

Necessity, as they say, is the mother of invention and as a result, the BBXImage Utility was born. As time went by, BASIS
augmented the utility with more and more capabilities, solving multiple problems as the needs arose. As its functionality grew,
other BASIS utilities and demos began to rely on its capabilities and so as of BBj® 14.0, BBXImage has achieved full-blown utility
status and is now installed in the <BBjHome>/utils directory.

What Can it Do?
The BBXImage Utility offers a wide assortment of image-related services, so it’s a challenge to describe it succinctly. Generally
speaking, it offers several high-level features, including:

 	 • Retrieving an image from a variety of sources

 	 • Modifying the image in a number of different ways

 	 • Saving the modified image out to a file or exporting it to another program

Retrieving an initial image is rudimentary, but the utility uses the BBXImageFactory class to create a BBXImage object from a
variety of different sources. The image can be a BBjImage, a Java Image, an image file on the server, or even an image from a
URL (such as one from the Web).

Most of the fun comes in when modifying the image, but once that is complete, you’ll need to do something with the resultant
image. The utility allows you to save it as a 32-bit PNG file with an alpha channel, a JPEG file with configurable compression, or
retrieve a programmatic version of the image in a BBjImage, Java BufferedImage, Java Image, or Java ImageIcon format.

Building Blocks

71

 B

By Nick Decker
Engineering
Supervisor

Getting Information
Although it seems like basic functionality, we have found that often times our
program needs to know the exact size of an image, but there’s no easy way to get
it. The utility solves this problem by providing getWidth() and getHeight() methods.
In addition to being useful for the developer, the class uses this information
extensively, such as when resizing the image while preserving the aspect ratio.

Makeover Your Images With BBXImage

http://documentation.basis.com/BASISHelp/WebHelp/utils/BBXImage/BBXImageFactory.html
http://links.basis.com/bbximage
http://en.wikipedia.org/wiki/Portable_Network_Graphics
http://en.wikipedia.org/wiki/JPEG

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

The utility has quickly transformed an average screenshot with distracting corner desktop remnants into a perfect specimen for
documentation, presentation material, and marketing collateral. It also provides methods to round the top and bottom corners
separately, so you can get the exact result you want regardless of how the original window rendered on the screen. Most of
the manipulation methods, such as the roundCorners() and setBorder(), are flexible and take parameters to impact the extent
of the image modification. That means that you can specify the border radius when rounding the corners, so it is possible to

Image Modification
The real power of the BBXImage class is evident when it comes to modifying the image. The utility offers methods to accomplish
several editing tasks, such as resizing, adding filters, rotating, flipping, cropping, rounding the corners of the image, adding a drop
shadow, and more.

Figure 1. An enlarged top left corner of a typical
screenshot with a section of the desktop visible

Figure 2. The same top left corner after using
the BBXImage class to remove corners and add
a border to the image

At BASIS, we use the BBXImage class internally for most of our screenshots to
‘knock out’ corners and add a border to the image. Many popular operating systems
render windows with rounded corners, but image screenshot and capture utilities
usually save out a rectangular image. The end result is a screenshot such as the
zoomed-in version of a window shown in Figure 1, where the window does not have
a border and the top left corner of the image shows a piece of the user’s desktop
behind the window’s corner.

The BBXImage class easily solves this problem and fixes our screenshots, as we can
take advantage of the roundCorners() and setBorder() methods. This removes the
desktop background remnant in the corners and adds a matching border to the image.
If desired, you can even add a drop shadow to make the image really stand out from
its target background. The processed screenshot is shown below in Figure 2.

Figure 4. The original image
before modification

control how rounded the corners will be. The method also gives you the
freedom to specify different sizes for the arc width and height, so the corners
do not have to be circular. The screenshot in Figure 3 shows six different
examples where the border radius was set to ever-increasing sizes for the
first four and the last two have different arc radii. Figure 3. The effect of increasing the border radius on an image

As another example of the utility’s flexibility when specifying a border for the image, you can stipulate the size, color, and opacity
of the border. Adding a translucent border to an image adjusts the image’s canvas size automatically, making room for the extra
diameter. Saving the image as a PNG retains the opacity of the image as well as any drop shadows and borders that apply.

Other Modifications
To demonstrate just a few of the BBXImage’s other manipulation capabilities, we’ll start off with a
simple image that we're all familiar with: the BBx® cup icon shown in Figure 4.

With a few lines of code, we’re able to modify the original image to suit our needs, as illustrated
in Figure 5.

Figure 5. From left to right – the image is flipped horizontally, flipped vertically, rotated 15 degrees, has an added drop shadow, is changed to grey scale,
set to 50% opacity, and darkened

The utility also offers a handy cropTransparent() method to return the smallest image possible by cropping out the transparent
edges of the original. Best of all, because all of these modifications are done in a BBx program, you can transform batches of
images programmatically. That makes it easy to automate the process of resizing, knocking out corners, and saving out multiple
images into a target directory with a desired image format.

72

Building Blocks

http://documentation.basis.com/BASISHelp/WebHelp/utils/BBXImage/BBXImage.html

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

Exerting Complete Control
In the few cases that you want or need control over the type of resampling to be used when scaling an image, the utility
offers a scaleWithHints() method where you provide RenderingHints. RenderingHints allow you to provide input into the
choice of algorithms used by Java, which performs the rendering and image manipulation services. This means that you can
tell the BBXImage class to resize your image using a specific technique, such as ‘Nearest Neighbor’, ‘Bilinear’, or ‘Bicubic’
interpolation. To get an idea of how the specific algorithms affect the final image, look at a saved screenshot of a Dashboard
chart. We used BBXImage to shrink it down to 50% of its original width and height, so the resultant image contains one fourth
of the information. To get a better idea of the resampling differences, we have magnified the results as shown in Figure 7.

Figure 7. A comparison between scaling with Nearest Neighbor (left) and Bicubic (right) interpolations

73

Building Blocks

Resizing Images
We have seen it over and over again in movies – the detective takes a grainy traffic photo to the lab, enlarges it
several times over, and ends up with a crystal clear image showing the perpetrator's license plate. Unfortunately,
that’s not possible in real life and just goes to show how far Hollywood is willing to stretch the truth to make a good
story. In practice, resizing images is not easy and there are dozens of ways to accomplish the task. Most forms involve
resampling the image, which relies on mathematical algorithms that interpolate and modify the data in the original
image. When enlarging an image, many formulas exist to try to determine what the missing pixels would look like in
a larger, higher resolution version of the same image. Interestingly, no one sizing method works best in all cases –
each have their strengths and weaknesses. Some methods work best when enlarging images, and some are better at
making images smaller. Some methods give passable results quickly, while others result in high quality images but take
more time and computing power.

What BBXImage Offers for Resizing Images
The BBXImage Utility is flexible when it comes to resizing images. For starters, there are the scale() family of methods
that attempt to ‘do the right thing’ when it comes to choosing a resampling algorithm. That means that the actual algorithm
used may vary, particularly when comparing upsampling and downsampling an image. Using these methods, you can
choose to scale your image by a percentage amount or provide a new absolute width and height. When you provide a
scaling percentage, it retains the aspect ratio of the original image, but it can change if you provide your own width and

Figure 6. A scaled version of the image with the original
aspect ratio (left) and a distorted ratio (right)

height. Because retaining the aspect ratio is typically desired, BBXImage
also offers other scaling methods where you provide the width or height
and it automatically computes the new height/width, retaining the aspect
ratio and scaling the image accordingly. Figure 6 shows the result of
scaling our BBj cup icon down while keeping the aspect ratio constant,
as well as a version where we forced the width and height of the target
image and overrode the aspect ratio.

http://docs.oracle.com/javase/8/docs/api/java/awt/RenderingHints.html

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc74

Building Blocks

While the ‘Nearest Neighbor’ results in a blockier image with a lot of information lost, the ‘Bicubic’ version is smoother and
retains more information. For example, both images contain the bars and numbers in the chart, but the ‘Nearest Neighbor’
version completely eliminated the chart’s borders, axis, and grid lines. Although the ‘Nearest Neighbor’ algorithm is very
quick, it often loses information as it only samples a single pixel adjacent to any that it processes. Upscaled images using
this algorithm are usually blocky and those that are scaled down often completely eliminate some of the original pixels. In
contrast, the ‘Bicubic’ algorithm is slower as it samples the colors of the nine pixels surrounding each one it analyzes, but the
final result is a better approximation of the original.

Live Demo
While the BBXImage Utility’s strength lies in its ability to manipulate images programmatically, you can take it for a test drive
without writing any code. Just go to links.basis.com/bbximagedemo and run a BUI program that demonstrates a few of the
more commonly-used capabilities. As you can see, the utility is easy enough to use that you can spruce up your adhoc
images that you include in emails to important customers, as well. A screenshot of the BUI app appears in Figure 8.

Figure 8. A BUI program demonstrates some of the BBXImage Utility’s capabilities

Summary
The BBXImage Utility helps to fill a gap between BBj’s graphical capabilities as offered by the BBjImageCtrl and
Java’s built-in image capabilities. Image processing can get deep, and typically the code required to accomplish
seemingly simple tasks can be lengthy and rely on several low-level constructs. So instead of writing low-level Java
code, why not use a custom BBj class that does all of the heavy lifting for you? The BBXImage Utility performs a
number of common tasks so that your application images and screenshot material will look their best. Go ahead,
satiate that starving artist that lives inside and make all your work look polished and professional!

• For more information, refer to
 • BBXImage Overview in the online Help
 • BBXImage Class JavaDocs
• Run the BUI image demonstration of the BBXImage Utility’s capabilities

http://links.basis.com/bbximagedemo
http://links.basis.com/bbximage
http://links.basis.com/bbximagejavadocs
http://links.basis.com/bbximagedemo

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

he Enterprise Manager (EM) has been a part of the BBj® Product Suite since BASIS introduced BBj in 2001. This powerful
tool provides administrators with the ability to manage and configure one or more BBj installations in a small office setting,
or across the entire enterprise. As the features in BBj (and technology in general) have grown over the years, so has the
EM. This article explores just a few of the powerful features now found in the Eclipse/Browser EM.

Version 13.0 of BBj introduced a completely new EM. Instead of continuing to maintain and add to what BASIS called the ‘Java
EM’ or ‘deprecated EM’, we chose to take advantage of the latest desktop, browser, and mobile technologies and pass those on to
our users. What does this latest technology give our valued customers?

 • An improved, modern interface with the ability to open multiple tabs of information at one time making it easier to manage
 multiple parts of multiple servers and databases simultaneously.

 • The option to use the tightly integrated BDT EM plug-in in the new Eclipse based IDE.

 • Flexibility to run the EM on virtually any platform including desktops (Java and Eclipse required), web browsers (no Java
 or any additional plug-ins required), and even mobile devices such as smartphones and tablets.

 • A product where all versions are built from a single codebase using the BBj Admin API so that each version stays up to date
 with any new features, enhancements, and bug fixes; this provides the user with a common interface, regardless of whether
 they are running in the IDE, in a desktop browser, or from a tablet.

By Jeff Ash
Software Engineer

Superset
In BBj version 14.0, the new EM is a superset of all the features and
functionality found in the now deprecated Java EM. As a result, developers,
and administrators should focus on using the powerful Eclipse/Browser EM
rather than the older Java EM. Now, BBj installations install a link to launch
the browser-based version of the EM, making it quick and easy to get up and
running with the latest technology.

Let’s take a look at some of the new features in the Eclipse/Browser EM that
are not present in the deprecated EM.

The Enterprise Manager
Boldly Goes Forward

 T

75

System Administration

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

Figure 2. Incrementally search the contents of log files

Figure 1. Multiple rearranged tabs in the Eclipse Enterprise Manager plug-in

76

Multiple Tabs
Multiple tabs as shown in Figure 1
give users the ability to have
more than one item open for
configuration at one time as well as
information about multiple servers
simultaneously. This new ability
makes it much easier to compare
configurations and go back and
forth between panels without losing
one’s place. Furthermore, in the
Eclipse plug-in version, users can
rearrange the tabs for easy side-by-
side comparisons or simply organize
the panels in a more personally
productive way.

Filters Open Files/
Processes/SQL Connections
The new EM provides users with the
ability to filter the list of open files,
processes, and SQL connections to
make it easier to locate the specific
information required. Using the
filtering feature, an administrator
can locate all the processes for
a particular program, or all open
files for a particular user. This
feature is especially helpful in large
installations.

Incrementally Searches
Log Files
Another very helpful feature is the
ability to search for strings of text in
server log files (see Figure 2). The
search feature is incremental and
has the option of only highlighting
matching text or completely filtering
out lines that do not have matching
text.

Improves User Experience
and Mobile Capability
BASIS significantly improved the
user experience with plans for more
improvements coming all the time.
Currently, we have segmented the
wizards into more easily digestible
pages, categorized items in the
navigation tree, given users multiple
tabs to allow rearranging the
workspace layout, simplified security
management, and much more. Since
the browser and Eclipse versions of

System Administration

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 77

System Administration

the EM use the same codebase, the user experience is almost identical whether in Eclipse, a desktop browser,
or a mobile device as shown in Figure 3.

Summary
The EM has grown from a simple configuration tool in BBj 1.0 to
a powerful application for managing, configuring, monitoring,
and testing all BBj installations across the enterprise. With
the ability to run on a desktop, in a browser, and even on
mobile devices, the flexibility of the latest evolution of the
EM is sure to improve the productivity of all BBj developers,
administrators and end users. Give the new Enterprise
Manager a try, and “Live long and prosper” with the newest
way to manage your enterprise.

Figure 3. Use the Enterprise Manager on your favorite tablet or phone

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

deas can be seeds that explode onto the computers of an entire workforce but a lack of time, energy, or funding can starve
an idea before it even gets a chance to germinate. In order to carve off time to nurture ideas when resources are tight,
you constantly need to be on the lookout for ways to be more productive with the resources you already have. And getting
productivity improvements to the tools in your toolbox, like a more fully featured grid control, just might help you find the time

to feed your ideas so that they can take root and grow. This article looks more closely at how new grid enhancements will make
you more productive in BBj® 15.0.

BASIS Grid Controls
BBj programmers commonly use various Grid* controls in the role of data entry, data verification, graphical control layouts, and
browser interface layouts. In a business application, the importance of organizing your data into rows and columns cannot be
overstated. It can be paramount for users to view and access information contained in databases of any size, so much so that the
Grid has entire functionality created for that exact purpose. However, as important as it is to access and view the returned results in
a Grid, the information has little value unless a user can select data in the Grid.

	 *References to “Grid” in this article are intentionally not specific but refer to one or all of the
	 BBjGrid controls ‒ BBjStandardGrid, BBjDataAwareGrid, and BBjDataBoundGrid ‒ because
	 they use the same model for row, column, and cell selection.

Default Selection Model
BASIS made some massive improvements to the selection model used in the Grid to aid you in nurturing your ideas and turning
them into reality beginning in BBj 15.0. In the past, the Grid used Oracle’s Default Selection Model (DSM) to work with the JTable,
which is the base upon which we built our Grid. For years, the JTable with the DSM has met developers’ needs, however, The
Times They Are A-Changin’ (Dylan, 1964). Although the DSM was effective at Grid selection, it had its limitations.

For example, Oracle based the DSM on the concept of rows and columns. Clicking in a cell with a mouse effectively split the
selected data into two separate values, a row and a column. The selected rows and columns did not have any knowledge of one
another and the Grid worked with them separately; however, a user could work with them in conjunction with each other under
special circumstances.

Add New Grid Selections to Your Toolbox

By Aaron Wantuck
Software Engineer

 I

Figure 1. Selecting cell (2, 3) with zero-based
indexes in the DSM

In the modern world of grid manipulation, selecting by row and column causes problems
for our user base. The most commonly reported problem is the inability to select and
deselect multiple individual cells within the Grid. The DSM was only able to select a
single cell because it recorded that cell as the intersection of the currently selected row
with the currently selected column, deducing which cell the user actually selected.

The blue lines in Figure 1 illustrate
using a currently selected row and
column to identify an individual selected
cell, represented by a blue square.
The selected cell is identified as (2,3)
because cell references follow the format
(row, col), where row and col are zero-
based indexes, ignoring any headers.

78

Language/Interpreter

http://documentation.basis.com/BASISHelp/WebHelp/gridctrl2/bbjstandardgrid.htm
http://documentation.basis.com/BASISHelp/WebHelp/gridctrl2/data_aware_grid_methods_bbj.htm
http://documentation.basis.com/BASISHelp/WebHelp/gridctrl2/bbjdataboundgrid.htm

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

While selecting by row and column works well enough for a
single cell or for multiple rows or columns, it does not work well
for selecting multiple individual cells. For example, if you select
cells (0, 5) and (2, 4), the DSM records that rows 0 and 2 are
selected and columns 4 and 5 are selected. This produces a
result that looks like Figure 2; you probably expected something
like Figure 3 instead.

Another common problem was that, at times, BUI selection
would differ from GUI selection. This was a result of using the
DSM for GUI applications while having completely different
code duplicate the functionality of the DSM for BUI. It was
difficult to maintain these two different code sets and still get the
same selections under all conditions.

Enhanced Selection Model
To address these issues and provide an improved way to
select items within the Grid, BASIS dropped both the DSM
and the DSM-like BUI code, and combined them into a single
shared code model, the “Enhanced Selection Model.” This
means that multiple cell selection is now possible, and that
future Grid code changes only need to be made once for both
GUI and BUI.

But what if you don’t want to change to the new model,
what if the Grid selection you have used for years is “good
enough”? You should not even notice the change. BASIS tested
extensively to ensure that the default selection behavior in the
Grid remains unchanged. We call this the legacy behavior,
detailed further in the “Legacy Selection Model” section below.
The Grid now offers you the new enhanced behavior, but only
once you make a programmatic call to enable it by calling
setEnhancedSelectionModelEnabled(boolean). You can also
call isEnhancedSelectionModelEnabled() at any time to find out
whether your Grid is using the Enhanced Selection Model.

Improved Cell Selection
The Enhanced Selection Model does not use rows and
columns, but records the individual cells selected either
programmatically or through an input device such as the
mouse. So what does this mean for Grid control users?
Since each cell is recorded independently, you can now
select multiple individual cells in a Grid. And you can use the
standard [Ctrl]+click ([Command]+click on a Mac – hereafter
just referenced as [Ctrl]) and [Shift]+click actions – to select or
deselect one or more cells. For example, if you select cell (0, 5)
and then hold down the [Ctrl] key while clicking cell (2, 4), you
will now see the results in Figure 3.

Also, you can now select a range of cells by holding down
the [Shift] key while clicking a second cell. If after that you
[Ctrl]+click individual selected cells, those cells will be
deselected, resulting in never-before achievable selections
such as those shown in Figure 4.

Figure 2. The intersection of rows 0 and 2 with columns 4 and 5

Figure 3. Selected cells (0, 5) and (2, 4)

Figure 4. An example of individual cell selection and deselection

You do need to be aware of a few changes when using the new Enhanced Selection Model. The first is that the model
brings with it the concept of the currently selected cell. Since you can now select multiple individual cells, which one
should be returned when you call getSelectedCell()? BASIS now defines a currently selected cell as “the last cell
selected, but only if it is still selected.” But what happens if you deselect the currently selected cell?

79

Language/Interpreter

http://documentation.basis.com/BASISHelp/WebHelp/gridmethods4/BBjGrid_setEnhancedSelectionModelEnabled.htm
http://documentation.basis.com/BASISHelp/WebHelp/gridmethods4/BBjGrid_isEnhancedSelectionModelEnabled.htm

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

setShouldHighlightSelectedRow() method. So perhaps you are wondering, “If I use setShouldHighlightSelectedRow() to
highlight full rows, how do I highlight full columns? A setShouldHighlightSelectedColumns() method doesn’t exist.” Well, I
am glad you asked. The Grid now offers a setShouldHighlightSelectedColumn() method that works with columns the same
way as setShouldHighlightSelectedRow() works with rows. This new method is present in both the enhanced and legacy
selection models, giving you full control over the Grid to highlight full rows and columns.

Legacy Selection Model
What happens if I already use methods that are unsupported in the Enhanced Selection Model? Well, the Legacy Selection
Model mimics the behavior of the old Oracle DSM, and stores selection values in a row and column format just as it always
has. You can use this legacy model to avoid changing your program, if you don’t need to select individual cells, or if you
simply prefer row and column selection. The Legacy Selection Model is still available for you and is in fact the current Grid
default, so no change is required.

Summary
If you have an application that requires users to select individual cells in a Grid, then you need to use the new
Enhanced Selection Model. The BASIS Grid allows you to have more control over how your users make their selections.
It makes maintaining the code easier, and eliminates some of the shortfalls in the legacy Default Selection Model ... and
it is optional. The Enhanced Selection Model is another example of BASIS providing you with better tools for developing your
applications, while increasing your productivity, helping you turn your ideas into reality.

Let’s look at an example. If a user selects cell (1, 5), and then
[Ctrl]+clicks cells (0, 1) and (3, 3) in that order, the currently
selected cell would be (3, 3); getSelectedCell() would return
(3, 3), and getSelectedCells() would return [(0, 1), (1, 5), (3, 3)].
The user will see the selections shown in Figure 5.

If the user then deselects cell (3, 3) with a [Ctrl]+click,
then there is no longer a currently selected cell. Method
getSelectedCell() would return (-1, -1) because the user
removed the currently selected cell from the set of selected
cells, but getSelectedCells() would still return [(0, 1), (1, 5)],
and the user would see the selection shown in Figure 6.

Selection for Rows and Columns
The second change is that the Enhanced Selection Model no
longer supports the setSelectedRow(), setSelectedRows(),
setSelectedColumn(), and setSelectedColumns() methods.
After all, you cannot select specific rows if there is no concept
of a selected row; instead, you select cells. BASIS designed
several new enhanced methods to allow you to set a selection
– setSelectedCells(Vector[intPair]) and getSelectedCells().
In BBj 15.0, these methods will allow you to select any
combination of individual cells programmatically. The method
setSelectedCells() takes a collection of integer pairs, each of
which holds a zero-based row and column index representing
an individual cell.

The getSelectedRow(), getSelectedRows(), getSelectedColumn(),
and getSelectedColumns() methods are still available in the
Enhanced Selection Model, but they work slightly differently
than they did under the DSM. Now they return rows or
columns that contain at least one cell that is selected.

To allow users to highlight an entire row, use the existing

Figure 5. Multiple cell selection with (3, 3) as the currently selected cell

Figure 6. Multiple cell selection after [Ctrl]+click to deselect cell (3,3)

80

Language/Interpreter

http://documentation.basis.com/BASISHelp/WebHelp/gridmethods2/bbjgrid_getselectedrow.htm
http://documentation.basis.com/BASISHelp/WebHelp/gridmethods/bbjgrid_getselectedrows.htm
http://documentation.basis.com/BASISHelp/WebHelp/gridmethods2/bbjgrid_getselectedcolumn.htm
http://documentation.basis.com/BASISHelp/WebHelp/gridmethods/bbjgrid_getselectedcolumns.htm
http://documentation.basis.com/BASISHelp/WebHelp/gridmethods3/BBjGrid_setShouldHighlightSelectedRow.htm
http://documentation.basis.com/BASISHelp/WebHelp/gridmethods3/BBjGrid_setShouldHighlightSelectedColumn.htm

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

nce you decide to create a new BBj® application with a graphical user interface (GUI), what is next? How do you get
started? You probably already have a good idea of what you want the program to do and what you want your users to see.
You may even know how you could create your GUI controls in BBj code, but you are looking for an easier way to lay them
out than manually creating the code. Wouldn’t it be better if you could see how they look as you lay them out?

The BDT Eclipse development environment is now your best choice for GUI and BUI development. The BASIS NetBeans IDE is
still a valid tool to use for the layout, but now you have an alternative under construction. Using the Business BASIC Development
Tools (BDT) in Eclipse, you can download and run its CodeEditor Eclipse plug-in, and you will be able to download the AppBuilder
and fully functional WindowBuilder (WB) plug-ins with BBj 15.0. These plug-ins support Java 1.8, whereas the BASIS NetBeans
IDE only supports up to Java 1.7. Eclipse offers a number of user-friendly utilities that will make your development faster and easier.

By Jerry Karasz
Software Architect Building WindowBuilder

Figure 1. Starting with an empty .arc file

 O

To implement a BBj GUI application fully, you need
to perform three tasks:

 1. Lay out the graphical controls

 2. Associate handlers with your controls’ events

 3. Write code to implement your business logic

This article focuses on the WB Eclipse plug-in as it
exists today (as the alpha release that accompanied
BBj 14.x), which helps you lay out your graphical
controls on one or more top level “windows” and
“child windows” to match your design. For our
purposes, we will assume that you have a BBj
project named WindowBuilder1, with an .arc file in
it named WindowBuilder1.arc that is empty; if not,
follow the directions at Creating a WindowBuilder
Project (links.basis.com/creatingwinbuild) and create
the BBj project and .arc file. Delete all of the controls
placed there when you created your .arc file, and
start with just the ‘Composite’ in the drawing area as
shown in Figure 1.

81

Development Tools

http://documentation.basis.com/BASISHelp/WebHelp/eclipse-bdt/getting_started/creating_a_windowbuilder_project.htm

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

Features Today
Let’s take a moment and look at the Eclipse layout. Because you asked
to edit WindowBuilder1.arc, Eclipse opened an editor for you, the WB
editor. This editor displays as one tab labeled with the .arc file name
that in turn has its own three tabs ‒ ‘Design’, ‘XML Source’, and ‘ARC
Source’. By default, the ‘Design’ tab displays but if you click on the
‘XML Source’ or ‘ARC Source’ tab, you can view the XML or ARC file
representation of the WB controls you have placed. The XML is of no
interest to you as it is just an intermediary format used by Eclipse. The
ARC text is what WindowBuilder will actually write out to your .arc file
when you save your changes.

For now, let’s stick with the ‘Design’ tab and look at the three areas it
offers: ‘Structures’ (made up of ‘Components’ and ‘Properties’ panes),
‘Palette’, and the unlabeled drawing area. The ‘Palette’ area shows all
of the installed control palettes – Figure 1 showed all of the default
palettes disabled except for the ‘BASIS Controls’ palette. To change
which palettes should display and how, use the Palette Manager (right-
click any palette and choose [Palette Manager…]).

Your first task is to add a top-level window to the drawing area, so in the
‘BASIS Controls’ palette, click to select BBjWindow. Then click in the
gray portion of the drawing area to place your BBjWindow. Notice that
several things happened when you did this. First, a rectangle appeared
in the drawing area that you selected and thus displays resize points
(small black squares) that you can click and drag to resize it (see Figure 2).
But more than that happened; there is now a strange entry selected in
the ‘Components’ pane, p1:BasisWindow as illustrated in Figure 3.

The entry p1:BasisWindow is the XML element name for the BBjWindow.
In fact, if you click on the ‘XML Source’ tab you will now see a
p1:BasisWindow XML element has appeared like shown in Figure 4.
Correspondingly, if you click on the ‘ARC Source’ tab, you will now see
a WINDOW entry appear (see Figure 5).

Going back to the ‘Design’ tab, you may notice another change that took
place. The ‘Properties’ pane now displays properties – in this case, for
the selected item in the drawing area, the BBjWindow. If you expand the
‘Bounds’ property, you see the individual values: x, y, width, and height
as Figure 6 displays.

Your next task is to resize the BBjWindow to occupy most of the drawing
area. You can do this by clicking and dragging the resize point in the
lower-right corner of the BBjWindow in the drawing area, or you can
click and edit the width and height properties directly in the ‘Properties’
pane.

It is now time to add a control in your design to your BBjWindow. To
add any control, scroll in the Palette/BASIS Controls pane and click to
select it, and then click to place it where you would like it on top of the
BBjWindow. Continue to add controls, setting their properties as you go,
until your window is complete. Finally, save your work by selecting
File > Save from the main menu, by using the [Ctrl]+S shortcut, or
clicking the [Save] toolbar button.

Now let’s talk about some of the fun new features that Eclipse offers us
for WB.

82

Development Tools

Figure 2. A BBjWindow selected in the drawing area

Figure 3. A BBjWindow in the ‘Components’ pane

Figure 4. BBjWindow in the XML Source as p1:BasisWindow

Figure 5. BBjWindow in the ARC Source as WINDOW

Figure 6. BBjWindow properties in the ‘Properties’ pane

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 83

Development Tools

Figure 4. BBjWindow in the XML Source as p1:BasisWindow

You may have noticed that WB is still under construction. BASIS is working hard to make sure that all of the appropriate
functionality in Eclipse is available for WB users. This is a big task, and promises some exciting new enhancements for building
GUIs in the near future.

Building Menus and Putting Controls on Tabs
We are currently developing the WYSIWYG model in WB that will allow you to easily build menus and add controls to tabs. The
new drag-and-drop implementation for WB will make it simple and intuitive to build your menus, sub-menus, menu items, and
popup menus by dragging-and-dropping items onto either the Structures pane or onto the Design tab. We are working similarly
to enhance your experience when you place a control onto one of the tabs in a tab control – dragging-and-dropping a control and
have it appear on the tab as it will at runtime.

Multiple Top-level Windows
We are working to provide a better way for WB to manage the multiple top-level windows you may have in one .arc file. In the
BASIS NetBeans IDE, you could open a display for each top-level window, but interaction with them was limited by only being able
to open one shared support window of each type: BBjGUI Palette, BBjGUI Inspector, and Properties. This meant that much of the
editing could only occur on one top-level window at a time. WB will soon allow you to view and edit multiple BBjWindows at one
time, where each display has its own ‘Palette’ and ‘Properties’ displays so that you can easily compare values and edit them.

.ARC File Properties
Another task is to extend the properties that are available for you to set and store in an .arc file. The format of an .arc file has
been stable for many years, while the controls have continued to grow and offer more and more functionality. However, unless
those properties can be stored in your .arc file, you cannot set them in WB and have them remain set when you run. Look for
new properties to start appearing on many of the controls as we go forward – everything from setting the row gutter on a BBjGrid
to setting the selected tab index on a BBjTabCtrl.

Summary
The WB Eclipse plug-in is BASIS’ newest user-friendly tool to help you develop GUI and BUI applications quickly and easily. It
will carry you into the future as Java 1.8 releases occur, and it offers a number of user-friendly utilities to make your development
faster and easier. To make it even better, BASIS plans several enhancements for WB to leverage the power of the Eclipse
development environment, not the least of which is the integration into Eclipse with the BDT CodeEditor. WindowBuilder is your
best choice for graphical control layout for your GUI and BUI applications.

Locate the button on the WB editor toolbar shown in Figure 7
that has the hover text ‘Quickly see/preview the window without
compiling or running it’. Click this button and a small popup window
appears showing you what your screen will look like when you use
your new .arc file in a BBj program.

WB assists you with aligning your controls as you drag them onto
the BBjWindow. If you drag a control to be near another control, WB
will automatically show an alignment indicator (a line) connecting
any side of the controls that is aligned (see Figure 8 for an example
when dragging a checkbox whose top aligns with the button). Notice
also that the current X and Y coordinates of the control display as
you drag it (112 x 10). This allows you to locate your control exactly
where you want it. Remember, if you don’t want to drag-and-drop
your control, you can still select it and set the ‘Bounds’ values (x, y,
width, and height) in the Properties pane to get the same effect.

In addition, once you select more than one control, you have
access to all of the standard alignment, movement, and spacing
toolbar buttons shown in Figure 9, as well as the standard cut,
copy, and paste functions.Possibly the best benefit of using BDT
WB is that your control layout and editing can now be together with
your code editing in Eclipse ... one powerful IDE to enhance your
productivity that gives you a boost in writing code and in laying out
your controls.

Features Coming Soon

• Review Creating a WindowBuilder Project in the online Help or within the EclipseHelp
• Check out the list of WB features already implemented and those yet to be implemented

Figure 8. Alignment indicator while dragging a checkbox control

Figure 7. Toolbar button for previewing your BBjWindow

Figure 9. WB alignment toolbar buttons

http://links.basis.com/creatingwinbuild
http://documentation.basis.com/BASISHelp/WebHelp/eclipse-bdt/getting_started/windowbuilder_overview.htm

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

he AddonSoftware® ERP Partner Program recently introduced a no-membership-fee "Authorized Partner" tier that combines
product discounts and free product training. This is an exceptional, low risk opportunity to help you expand your business!

The Opportunity
AddonSoftware partners enjoy generous margin opportunities, an exciting set of state-of-the-art business development tools, and
the technical and training support they would expect from a long-standing industry leader of software development tools.

While the AddonSoftware Authorized Partner program tier has no membership fees, it extends significant product
discounts; a higher discount on new/additional/upgrade licenses and a generous discount on software maintenance
renewals. Suitably qualified Authorized Partners can quickly attain Premier or Elite status and begin growing their
membership to the higher levels of the program.

The Product
AddonSoftware is an affordable full-featured and fully integrated business management solution. It offers scalable deployment
options to fit your customers' needs and budget while providing the core enterprise resource planning features that currently
support many businesses like those being run by your customers. Full integration eliminates the cost of multiple stand-alone
applications and the resulting redundant data entry. With AddonSoftware, you select the licensing, define the number of users,
and choose the functionality your customer needs.

Focus on Your Vertical
Do you have a vertical market that you want to put all your efforts into but your

 T

By Paul D. Yeomans
Vertical Market Account
Manager

resources are divided maintaining standard ERP modules? Consider
using the AddonSoftware ERP modules as your building blocks and
focus all of your resources on maximizing the value of your vertical
market solution to further differentiate you from the crowd. Using
Barista®, a powerful and efficient data dictionary-based RAD
customization tool, you can inherit built-in features and functions
to get substantial new feature and function for your vertical with
little or no effort.

84

A New Day for
AddonSoftware Partnerships

A New Day for
AddonSoftware Partnerships

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

Supported by the E-Learning Center
Flatten the learning curve at the online e-Learning Center as it fits into your
schedule, at the location of your choice, at your own pace. Read about it in depth
at On-Demand Enlightenment at the BASIS E-Learning Center.

The Cloud Option
Running AddonSoftware in the cloud makes deploying and upgrading your ERP
software simpler and more affordable. Of course, you always have the choice of
running AddonSoftware along with any BASIS solution on-premise. But, now you can
run it online in a cloud environment – one solution, one technology set for both options.
Cloud Services makes AddonSoftware even more affordable to use, own or rent, and
deploy.

Commercial Open Source
Authorized Partners may optionally elect to participate in Cooperative Product Development, an
innovative approach to earning product credits for ongoing AddonSoftware-directed development.
Combining a traditional channel-based product delivery program with the openness and access
to source code of an open source product development model, the AddonSoftware Cooperative
Product Development Program delivers the best of both worlds, while retaining the retail value of the
solution. Contributing expert product development meets a partner's own needs while helping to shape the overall future of
AddonSoftware products. Your ‘sweat equity’ is rewarded with product margins of up to 100% on new product sales.

The Basics of AddonSoftware
 • Built-in features – Includes a long list of standard utility features normally only provided by third party products or with
 additional development effort, thereby reducing costs.

 • Mature and yet contemporary – AddonSoftware is the result of more than 30 years of continuous improvement with
 expanded features, increased functionality, and updated technology. For an example of these improvements, consider the
 graphical AddonSoftware Dashboard shown in Figure 1 and featured in AddonSoftware’s Digital Dashboard Takes Off.

Figure 1. The digital AddonSoftware Dashboard

 • Easily customizable – No one knows your business software needs better than you. Tailoring your business software to
 match your customers' workflow and industry practice is critical. To this end AddonSoftware includes Barista, the data
 dictionary-based RAD customization tool, at no additional cost.

 • Preserve your customizations – Customized solutions often restrict upgrades to newer, more modern versions.
 AddonSoftware preserves years of customization investment across updates or even fresh installs of the base product.

 • Robust document output – Users can preview, archive, print, email, fax, or convert to PDF or ASCII text format any
 generated report without additional costs. Reports may also be output to Google Docs for easy access in the cloud and real-
 time collaboration. Legacy report code is preserved in upgrade installations, and output accommodates modern printers, older
 line printers, and optional third party tools such as UnForm.

85

http://synergetic-data.com/sdsi.cgi?p=unform9
http://links.basis.com/14elearning
http://links.basis.com/14dashaddon

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

 • Cross-platform freedom – Choosing AddonSoftware does not dictate your operating
system choices now or in the future. You can
even choose to mix-and-match on any of the three
deployment tiers – presentation, data, and logic tiers –
where the application servers can each run on any Java
supported operating system, the database server on another
and the clients can be Macs, Windows, or web-based desktop or 	

				 mobile devices without any Java.

Your opportunity is waiting. There is no downside to adding AddonSoftware to your portfolio. Contact us at
info@addonsoftware.com.

Freedom to Grow
Becoming a partner is just the beginning. As you see, choice and flexibility are our core values. The partnership opens
the door to the full suite of BASIS technology supporting, for instance, web and mobile application development.

Need a flexible e-business solution without all of the development work? The AddonStore shown in Figure 2 is a
multilevel platform for developing industry-specific e-business solutions. Best of all, you have the freedom of choice as to
the accounting or ERP system the store interfaces with – AddonSoftware or another solution in your portfolio. Roll out your
own e-business solution!

86

Figure 2. AddonStore, your e-business solution

Already a BASIS Preferred Partner?
Speak with your Account Manager to

grab this new opportunity.

mailto:info@addonsoftware.com

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

ow often have you thought, “If BBj just had a function to capture an image of my screen…”?

If you are like many developers, you have thought this more than once over the years. And, after all, how hard could it be to
just grab the screen contents and stuff it in a buffer, right? Unfortunately, it is not that easy, but with BBj® 14.0 and higher, you
can easily program a number of once-difficult tasks in only a few lines of code.

Through advancements in the BBj language, you can now capture screens and all BBj windows to BBjImage objects in both
the graphical (GUI) and browser (BUI) user interfaces. BASIS has added a new ScreenCapture class to its arsenal of helpful
utility classes in the file <BBj Install>/utils/screencapture.bbj. The ScreenCapture class greatly simplifies your use of
this UI-independent capturing functionality, giving you programmatic control over how to capture images.

In addition, we fine-tuned the existing BBWindowUtils::centerWindow() method to take advantage of new BBjTopLevelWindow
“getOuter” methods that deliver the outermost X and Y coordinates and dimensions of a window. The new versions of these
methods take into account any window decorations such as a menu bar, window title, and frame. Until now, BBj developers
had to come up with their own algorithms to compute these values the best they could.

Enhancements to the BBj Language
At the heart of the ScreenCapture class lie two capture-related methods that each return a BBjImage object.

 1. BBjSystemMetrics::getScreenImage() captures an image of the entire screen.
 2. BBjWindow::getWindowImage() captures an image of a top-level or child window.

Once you have a BBjImage object, you can manipulate it with code or stream it to a file.

 H

87

You Captured My Screen!You Captured My Screen!

By Ralph Lance
Software Developer

Building Blocks

http://documentation.basis.com/BASISHelp/WebHelp/utils/ScreenCapture/package-summary.html
http://documentation.basis.com/BASISHelp/WebHelp/utils/BBWindowUtils.html
http://documentation.basis.com/BASISHelp/WebHelp/gridctrl/bbjtoplevelwindow.htm
http://documentation.basis.com/BASISHelp/WebHelp/gridctrl/bbjimage.htm
http://documentation.basis.com/BASISHelp/WebHelp/winmethods3/bbjsystemmetrics_getscreenimage.htm
http://documentation.basis.com/BASISHelp/WebHelp/sysguimethods5/bbjwindow_getwindowimage.htm

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

Summary
Due to the program control we now have, you can easily build screen and window captures into BBj applications. One example
would be in a common error handler routine that captures the state of the screen at the time of an error. Another use for this
handy tool could be to “take a picture” of a top-level form or any part of a form contained on a child window programmatically
while automatically creating rudimentary documentation and/or help files. The new BBjTopLevelWindow “getOuter” methods
allow you to get the outermost coordinates and dimensions of a window without concerning yourself with window decorations.

These are just a couple of the most recent advances in the BBj language that help BASIS create and enhance useful utilities
for the BBj community while giving you, the BBj developer, more control with less effort. The possibilities for these new tools are
limited only by your imagination!

Building Blocks

88

The getOuter methods added to the BBjTopLevelWindow class include the following:

 • BBjTopLevelWindow::getOuterX() retrieves the outer window’s X coordinate

 • BBjTopLevelWindow::getOuterY() retrieves the outer window’s Y coordinate

 • BBjTopLevelWindow::getOuterWidth() retrieves the outer window’s width dimension

 • BBjTopLevelWindow::getOuterHeight() retrieves the outer window’s height dimension

These methods allow you to position your windows more accurately, calculate the sizes and resize them, or perform a host of
other previously complex actions where you need to know exactly what is where on the screen.

Screen Capturing Made Easy!
The ScreenCapture class installs with BBj 14.0 and higher as a utility in <BBj Install>/utils/screencapture.bbj. It contains
several static methods that you can invoke directly without having to first create (aka instantiate) an object instance of the class.
ScreenCapture uses neither a client object instance of the popular java.awt.Toolkit for screen captures nor java.awt.Robot for

Figure 1. Screen Capture Demo

window captures, so you can use it in both BUI and GUI programs.

Simply running screencapture.bbj brings up a demonstration window as seen
in Figure 1 that allows you to perform a screen, top level window, or child window
capture.

By default, the demo program stores each capture image in a file in the ‘Default
temp directory’ displayed near the top of the window. Marking the ‘Show Save
Dialog’ checkbox gives you a ‘File Save’ dialog so you can override this default
directory and store each image wherever you like. After saving your GUI
capture to a file, it appears in the default image viewer on the client via a call to
BBjThinClient::browse(). Captures made in BUI work identically, but their image
file is made available to the web server via BBUtils::copyFileToWebServer().

The demo code is at the bottom of the screencapture.bbj file, immediately
following the classend statement for the ScreenCapture Class. The static
methods in ScreenCapture allow you to use default values for pretty much
everything. For example, you can use ScreenCapture.capture([window!]) to
use all of the default values, or you can set the image file path and name explicitly
and specify whether the save file dialog should be presented using code like this:
 ScreenCapture.capture([window!], temp_dir$ + "mycapture.png", 1)

The image file format used by BBjImage::getBytes() usually PNG, JPG, or GIF, is
implied by the extension of the file name you provide.

Missed an Issue?

www.basis.com/advantage

http://www.basis.com/advantage-overview
http://documentation.basis.com/BASISHelp/WebHelp/winmethods3/bbjimage_getbytes.htm
http://documentation.basis.com/BASISHelp/WebHelp/utils/BBUtils/BBUtils.html#copyFileToWebServer(BBjString)
http://documentation.basis.com/BASISHelp/WebHelp/sysguicontmethods/bbjthinclient_browse.htm
http://documentation.basis.com/BASISHelp/WebHelp/gridctrl/bbjtoplevelwindow.htm
http://links.basis.com/screencapture

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

By Jeff Ash
Software Engineer

ne great benefit web applications offer end users is the ability to simply visit a URL in their browser and run the application
without needing any special installation or configuration. This functionality is possible because the browser provides the
runtime environment for the client application. BASIS offers two powerful options for deploying a standard BBj® application in
the browser. The extremely popular and cutting edge browser user interface (BUI) provides a quick and simple way to deploy

a standard BBj application as a 100% browser-based application with no special installation or plug-in requirements for the user.
However, some applications may be better suited for running on a standard desktop or they may have user interface requirements
that are not supported by BUI such as custom Java components. Enter Java Web Start, a powerful part of the Java Runtime
Environment automatically installed on most desktops around the world.

Java Web Start allows users to run applications directly from the Internet using a browser and without the sandbox restrictions
placed on Java applets. The application does not run inside the browser, but rather, the browser downloads a JNLP (Java Network
Launching Protocol) file that describes the application, configuration, and its required resources so that Web Start can properly run the
application. When Web Start launches an application, it downloads the required resources described in the JNLP file and then runs
the application. Since BBj’s thin client is a Java application, BBj developers can make their applications available to their end users
via Web Start to eliminate the need for any special installation on the client machines. Additionally, using Web Start makes it easier to
upgrade to new versions of BBj because clients will receive an updated version of the thin client from the server automatically, once
the server upgrade is complete.

Deploy an Application Using Web Start
Setting up an application for deployment using Web Start is quick and easy via the Enterprise Manager (EM) using the Eclipse
plug-in version or the browser-based version. Initially, you only need to configure a few simple options to get up and running,
however, the EM provides a very powerful and robust interface for managing the advanced aspects of the JNLP (including raw
XML editing for those who require very specific changes).

 O

ZerO Deployment
 With JNLP

Figure 1. The top portion of the ‘JNLP Application Editor’

Log in to the EM.

Expand ‘Web’ and ‘JNLP Configuration’
node in the ‘BDT EM Navigator’.

Double-click ‘Applications’ to open
the list of currently configured JNLP
application configurations.

Select [+] to add a new application and
open the ‘JNLP Application Editor’.

At the top of the editor in ‘Application
Name’, enter a name for the application
without spaces, as shown in Figure 1.

NOTE: As you type the ‘Application
Name’, the ‘Launch URL’ updates to
reflect the changes. The ‘Launch URL’
is the URL to give to the end users to
launch the Web Start version of the
application.

In ‘Application Description’, type the
program name and any additional
program arguments in the ‘Program
and Arguments’ field.

1.
2.

3.

4.

5.

6.

Additional options further down the dialog
screen provide more configuration settings
for the application as required.

89

System Administration

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

Summary
Java Web Start provides a number of powerful features that make deploying BBj applications throughout the enterprise a snap.
There is no need to install a BBj thin client on each machine manually when Web Start can handle this automatically. Instead,
using the EM, configure those enterprise applications to run from Web Start quickly and safely. Save time managing deployment,
installation, and updating applications and put that time to better use making that already great application even better!

Note the three tabs at the bottom of the editor – ‘Application’, ‘Info/Resources’, and ‘.jnlp’, Because of the many configuration
options available for JNLP deployments, the editor splits the information into multiple tabs for better organization. The ‘Info/
Resources’ tab provides the ability to include additional resources such as icons, additional JAR files, and even native libraries.
Further, administrators can include different resources such as platform-specific JARs or native libraries based on the client’s
operating system. Figure 2 shows an example of two such JAR files included by default in each JNLP application. Applications
require one JAR for Windows (webstart2166.jar) and an alternate JAR for Mac (webstart2120.jar).

Figure 2. Alternate resources for different client platforms

Figure 3. XML definition for the JNLP file

• For more information regarding the use of Java Web Start, refer to
 • Configuring Web Start During a BBj Installation
 • Running BBj Thin Client with Java Web Start

• Read these related Advantage articles
 • Enterprise Manager Admin Only “Safe” Mode
 • Don’t Put All of Your Jetty Eggs in One Context

For applications that require additional JARs
or native libraries, right-click the appropriate
operating system node and choose the
desired operation from the popup menu.

In addition to the robust user interface for
defining the JNLP, the editor also provides
the ability to edit the raw JNLP XML
definition. Select the ‘.jnlp’ tab to view or
edit the XML definition (see Figure 3).

90

System Administration

http://links.basis.com/kb-cws
http://links.basis.com/bbjthinclient
http://links.basis.com/11trz-emadmin
http://links.basis.com/14jetty

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

Building Blocks

91

ntil now, processing invoices for payment in AddonSoftware® was a bit time consuming and prone to errors, not to
mention that it required onsite approval and/or signature. However, the release of AddonSoftware 14.0 changed all that.
It’s now easy, efficient, and mobile!

The Payment Authorization feature in the Accounts Payable (AP) module now greatly improves record keeping, streamlines
workflow, and saves tremendous time. The AP clerk handles paper invoices only once; they never leave the clerk’s desk and
are destroyed when the run is complete. The system manages the flow of work and executives can perform their tasks from
anywhere, whether they are in their office or traveling on the road. Errors are minimal and time is saved!

This article looks at the AP process flow then and now, and offers some guidelines to using this new feature.

The Old “Painful” Way
The standard flow looked something like this:
 1. An AP clerk received invoices from vendors, recorded on the face of the paper invoice which General Ledger account(s)
 to charge, organized the paper invoices into some kind of order, and then delivered them to an AP supervisor for
 payment approval.

 2. The AP supervisor reviewed the paper invoices and signed or initialed them as approved for payment and returned them
 to the clerk.

 3. The clerk
 a. Entered the invoice data.
 b. Printed the checks.
 c. Returned the checks to the responsible executives for signing along with the paper invoices in case they had questions.

 4. When the executive completed signing all the checks, the executive returned them with the paper invoices to the clerk.
 5. The clerk mailed the checks to the vendors and filed the paper invoices in a filing cabinet.

“Painless” Invoice Entry and Review
In the new Payment Authorization feature, the simplified entry/review flow looks like this:
 1. The AP clerk
 a. Receives the invoices from the vendors and immediately enters the data, scans the paper invoice, and attaches the 	 	
 image to the invoice record in the system.
 b. Notifies the reviewer, who is normally the AP supervisor, that invoice entry is complete and ready for review.

 2. The reviewer, using the ‘Payment Selection Entry’ form
 a. Looks at the invoice images online.
 b. Records approval of the invoices as “ready to progress through the process,” all without touching any paper.

 3. The approvers/check signers receive an email notifying them that there are invoices awaiting their approval.

 U

Kurt Williams
Software Developer Painless Payables - Anywhere!

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

Building Blocks

92

“Painless” Invoice Selection and Approval
The new process of selecting and approving invoices for payment looks like this:
 1. The approver/check signer, using the ‘Payment Selection Entry’ form
 a. Reviews the invoice images online.
 b. Records approval for each payment.

 2. The AP Clerk
 a. Verifies that all checks have the required approval or approvals as detailed in the Two-Signature Requirement 	
 section below, using the ‘Payment Selection Entry’ form.
 b. Prints the checks on which the system applies the signature image of the approving executive.
 c. Mails the checks to the vendors and shreds the original paper invoices.

Two-Signature Requirement
If any check exceeds the limit set by the business that requires two signatures, the AP module will require a second
approval. The process looks like this:

 1. The first check signer finishes and closes the ‘Payment Selection Entry’ form.

 2. Check signers/reviewers receive an email notification detailing the status of the approval process.

 3. A second check signer then logs on and reviews the invoices that need additional approvals.

 4. The group receives a notification email with the approval status of the invoices.

Payment Authorization Setup
The Payment Authorization feature is configured via the ‘Account Payable Parameters’ form as shown in Figure 1.

Figure 1. ‘Payment Authorization’ tab in the AP Parameters form

This form controls whether to use and how to use the Payment Authorization feature. Here, you can specify whether to send
notification emails, and whether two signatures are required and at what payment threshold the second signature is needed.
It also controls where to store the invoice images, which can include Google Drive and the Barista Document Archive
system. The system can require that each invoice has an associated stored image. If so, the system blocks the invoice data
entry update if an invoice is missing a stored image. You can also set the background colors to visually identify the approval
status of an invoice on the ‘Payment Selection Entry’ form.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

Building Blocks

93

Figure 2. Payment Authorization Approver & Signer setup form

Payment Authorization
Approver & Signer Form
The new ‘Payment Authorization
Approver & Signer’ form is where
you set up the reviewer and
approvers/check signers as shown
in Figure 2. This form controls
which users are the AP clerks,
which are the reviewers providing
preliminary approval, and who are
the check signers, as well as storing
the location of the signature image
file. You can limit the check signer's
approval authority by specifying a
maximum authorization amount.

Payment Selection Entry
The reviewer and approvers/check signers do all their work in the ‘Payment Selection Entry’ form shown in Figure 3.

Figure 3. Payment Selection Entry form
The user can select individual grid rows (invoices) by clicking on a single row, select multiple grid rows by using the [Ctrl]/
[Command] or [Shift] keys in combination with a mouse click, or select all rows by using the [Select All] button. Once users have
selected a row or rows, they can click [View Images] to render the invoice images for the selected rows in the browser for review.
Clicking [Approve Invoice] records their approval of the selected invoices for payment.

In Figure 3, you can also see the background color-coding of the invoice approval status. The first four invoices have all the approvals
they need so they have a white background and the check box to the left is marked. The last three invoices have one approval, but
require a second approval since they will result in checks greater than $1,000. The background in our example is lavender and the
check box is not checked. The [Clear All] button clears any selections that might have been made in error. When all selections are
completed, the user clicks on the process button ‒ a green arrow ‒ thereby applying the approvals and exiting the form.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

Check Printing
Once all the approvals are completed, check printing can proceed. The system applies a signature image to the check
based on which signer(s) approved the invoice for payment. Figure 5 illustrates a signed check.

Figure 5. Check with digital signature applied

Summary
The AddonSoftware Accounts Payable Payment Authorization feature delivers several important benefits. It improves
record keeping by storing images of invoices online attached to the invoice record, facilitating instant invoice retrieval.
Paper invoices can be shredded and discarded saving file space and paper handling. The database stores invoice
approvals, preserving the approval and check signing history of all invoices. Workflow is streamlined as each responsible
person in the process receives notification via email when their attention is required and all others involved in the
process are informed of the status. Most importantly, executives can perform the approval process from anywhere they
may be, whether that is in the office, at home, or on the road. Who wouldn’t want to save time by limiting the movement
of paper, eliminating the filing of paper invoices, and eliminating manual check signing? It is now as painless as payments
can be.

Figure 4 illustrates what a notification email looks like during the authorization process. Notice the upper grid in the email
shows invoices with one approval, but require two approvals because the resulting check would be over the company-defined
limit of $1,000. Also notice the four invoices in the lower grid which have been completely approved and are ready for payment.

Building Blocks

94

Figure 4. Email notification of approval status

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 95

System Administration

or those of you who like to look for the changes that BASIS makes in each BBj® upgrade, you may have noticed in
version 14.12 a new file called jetty.xml. This addition wasn’t, as some may think, a stealthy way for us to migrate our
configurations into xml but rather a way to provide much greater flexibility in how to deploy your applications and pave the
way for things to come. With this change, the benefits reach a wider audience. This article takes a closer look at the benefits,

and will help you understand the added power we’re providing and help you modify your deployments to take advantage of this power.

Configure Jetty the New Way
So why did BASIS decide to confuse users with yet another configuration file?

You may not have even thought about what is going on behind the scenes ‒ you write your application and you configure it in
Enterprise Manager (EM) to be accessible via a web browser. Perhaps you’ll run it as a BUI application, or use Java Web Start/

Don’t Put All of Your Jetty Eggs
in One Context

Richard Stollar
Software Developer

Figure 1. The beginning of the myServlet class

 F

JNLP to launch it on your desktop
via the Web, but either way, you will
deploy it within the internal Jetty
web server. However, there is only
one server that is making all of your
applications available and that means
all of your applications are visible to
all of your users. We decided that it
was time to enhance that.

Let’s start by looking at the new
jetty.xml file that is behind the
configuration. Figure 1 shows the
default file that BBjServices created
automatically for you.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc96

System Administration

Context is the key word here. A context is a place where an application exists. Remember that these applications are
BUI, Web Start, web services, or web servlets, but currently there is only one context at http://{server}:8888 or
http://127.0.0.1:8888. All of your applications are in that context, but they don’t have to be. BASIS provides a way for you
to create new contexts and decide which applications are available in which context.

The Root BBj Context
The standard jetty.xml defines several contexts, the most significant of which is the BBj or root context that by default contains
all of the applications. When you deploy an application – BUI, JNLP, or servlet – you can specify a custom name for the context;
if you don’t specify a custom context, then Jetty will assume the root context. Keep this root context in mind as you read through
this article as we’ll mention it from time to time.

Hostnames and IP Addresses
So let’s step back a little bit and think about the hostname and what it means. When you open a page in your browser, you likely
use a nice friendly name like google.com and the browser looks up google.com to find its IP address. Read on for the details of
how that works or if you are already familiar with IP addresses, skip to the next section in this article ‘Hostnames and how BBj
Services Handles Them’.

The browser is the client and the server is, well, it’s the server. All clients need to obtain an IP address for the server and this
is done using hostname resolution. If the client doesn’t already know the IP address for the server (it can be listed in a special
hosts file), then the client uses a domain name server (DNS) to look up the IP address of the server.

The browser communicates with that address using the HTTP protocol and all requests have a header that contains the name of
the server you want to talk to, google.com in our case. When the server receives the request, it looks at the header to decide if
and how it will deal with that request. For example, www.google.com will go to the search engine we’re all familiar with, whereas
translate.google.com will go to the Google translator application. It could be that both of these friendly names resolve to the same IP
address or it could be that they don’t, but what’s important is that it is the server’s job to decide if and indeed how it will respond.

Hostnames and how BBjServices Handles Them
Your machine running BBjServices exists on a particular IP address, 10.0.0.10 or 192.168.0.10, for example. It will most likely have
at least one hostname that should be known by the clients, jupiter for example, but you can use almost any hostname.

In addition to a specific hostname or IP address, your computer has what we call a loopback device. The loopback device is most
commonly referred to as localhost or by the IP address 127.0.0.1.

Therefore, by default any hostname that resolves to the IP address of your server gains access to the root context we were talking
about earlier. The URL http://juniper:8888/ will display the BBjServices welcome page. All of your Web Start applications will
be in /jnlp/*, your web services in /webservice/*, your servlets in /servlet/* and your BUI applications in /apps/*.

Creating Custom Contexts
Keeping all of your eggs in the same basket, or in the same context, is easier to administer but does not suit everyone. Suppose
you have some applications that your customers access and another set of applications that your internal staff use. You may
need to create a level of separation between them so that the external users cannot access the internal applications even if they
can correctly guess their names. What you need to do is tell Jetty what hostnames it should accept and which of your precious
applications live there. Here’s how we go about it.

Consider that you are developing a servlet-based application that requires the deployment of multiple servlets, but at the same time,
you want to restrict this application to a specific host or sub-domain. To achieve this goal, create a new context in jetty.xml with
the basic XML content as shown in Figure 2.

Figure 2. A custom context

Be sure to insert this context XML element immediately before the </contexts> marker.

Now, when you restart BBjServices, you will have a new context available called myapp into which you can deploy your servlets.
We assigned the new context a <host> element that tells Jetty the hostname for the context. Your servlets, for example, will be
available through http://myapp.juniper:8888/servlets/*. The \var\www\myapp folder specified in docbase is where static
content such as images or html pages should be saved.

https://www.google.com/
https://translate.google.com/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 97

System Administration

Deploying Your Servlets
If you’ve created a servlet-based application, you’ll know that keeping the servlet deployed is extremely important. You will most
likely dedicate a BBj program to deploying the servlets and add this servlet deployment program to the autorun list.

You will have to make a small change to your servlet deployment program in order to deploy your servlets to a specific context.
Currently, your servlet deployer will contain a line of code similar to this:

 registry!.publish("some_path", myServlet!)

If you leave this code alone, then Jetty will deploy your servlets in the root context as before. However, to specify a context, add its
name as the first argument like this:

 registry!.publish("myapp", "some_path", myServlet!)

Once deployed, users will only be able to access your servlet through that context. Creating your own custom contexts also ensures
that sessions are unique and that session data for servlets in one context remains isolated from servlets in another context. Even
if you deploy the same servlet to two different contexts, they will not share session data. The same client can access both servlets
without corrupting data.

To simplify deployment, you can specify the servlets to register within a context when Jetty starts. To achieve this,
add a servlet entry to your custom context. Figure 3 shows a servlet entry that will make your servlet available on
http://myapp.juniper:8888/servlets/myservlet.

Figure 3. Adding a servlet to the custom context

You can add as many servlet entries as required to the context and they will deploy automatically each time your BBjServices
restart. Each servlet entry requires three pieces of information ‒
 1. The name of the servlet as it will be used in the URL (in this case, myservlet).
 2. The program file name that should be located in some path in your config.bbx file’s prefix (in this case, MyServlet.bbj).
 3. The config file used when executing the servlet (in this case, C:\BASIS\cfg\config.bbx); if you do not specify a config file,
 myservlet will use the default config.bbx.

In order for the automatic deployer to function, you need to set the admin entry in jetty.xml by specifying your admin user’s
username and password.

Specifying the Admin User’s Username and Password
If you change the username or password that you use for your admin user, then you will need to update the admin entry in
jetty.xml. To set the user credentials, edit jetty.xml, enter the correct user and password in the admin entry, set the
encrypted flag to false and save the file. It would need to look something like this:

	 <admin user="admin" password="admin123" encrypted="false" />

Don’t worry about entering the password in clear text because BBjServices will encrypt it automatically when they start and after
restarting BBjServices, the entry will look more like this:

	 <admin user="admin" password="B1NhCfk1XmL0/u1WA8aoKQ==" encrypted="true" />

Deploying Applications to a Custom Context
Another element that you may wish to control is the deployment of your applications. Up until now, your applications have all lived
in the same place, but in line with the other changes we’ve put in place we decided to give you greater control and flexibility of that
too. You can specify a custom context for all your applications, that’s BUI and Web Start/JNLP applications as well as web services.
In much the same way described above for servlets, you can control which applications Jetty places in which context or you can
again leave the deployment to the root context. The EM allows you to select a context from the list of available contexts and restrict
access to a specified hostname within that context.

If editing configuration files is your thing then you’ll know that all BUI and Web Start applications are configured through
bui.ini and jnlp.ini, which are both in the basis_home\cfg folder and these files list the applications deployed. Inside each
applications’ configuration you can add a CONTEXT={context_name} to control which context the application will be deployed to. For
example, CONTEXT=test will deploy the application to the test context. Each web service also has its own configuration file, which

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc98

System Administration

can be found in the basis_home\cfg\webservices folder and again you can specify the context by adding context={context_name}
to the file.

For those of you that don’t want to mess with the configuration files directly, then the EM is the place to go. For each of the different
application types you can configure the context where the application will go.

Whether you configured contexts with the EM or you edited the configuration files manually, the result is the same; you’ve placed
your application within that custom context. Remember to define the custom context before assigning an application to it, or the
application will be invisible and you really don’t want that!

Figure 4 shows setting the context in action for web services, but the same principle applies on the BUI and JNLP configuration
pages. When contexts have been defined in jetty.xml you can select which context the application will be deployed to from the
dropdown list.

Figure 4. Set the context for your applications

Why did we go to all That Trouble?
We listen to the newsgroups and recently received the question, “Is there any way to turn off the browser EM access without
disabling our JNLP access?” The problem was that everything was accessible on the server and you couldn’t do much about it.
Unless you took special action by installing another web server like an Apache server to filter requests, all your applications as well
as EM were accessible.

Besides allowing you to restrict access to your applications, another significant benefit relates to BBj Servlets. Servlets are by
design stateless but you almost certainly need to maintain some kind of user state that you would achieve through the underlying
session. The session ID cookie identifies the client's session with each request but with all your servlets on the same URL
(http://jupiter:8888/servlet/*), then there is no real way to have some servlets use a different session from other servlets.
Using contexts allows each session to maintain a unique session ID and thus unique session data.

Keep Enterprise Manager Safe
One of the applications that you may want to take control over is EM. You don’t want someone
trying to hack into your EM that resides on the same server as your public application, do
you? Keep that employee you had to let go last week from acting out his need to mess with
your server or delete your database.

Ask yourself two simple questions, “Is my Enterprise Manager accessible over the Internet?”
and “Do I still have admin123 as my admin password?” For many of you, the answer to both of
these questions will be, “Yes!”

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 99

System Administration

of them have a specific <host> entry, they are available to all hosts but the path is different providing http://juniper:8888/files,
http://juniper:8888/documentation, and so on.

Earlier, you saw how Figure 5 showed adding a hostname to the EM configuration to limit access to a specific hostname but the
EM also has a path that is /bbjem, but again it doesn’t have to be and it is easy to place EM on http://em.juniper:8888/em by
using path="/" instead of path="/bbjem".

Using Context Parameters and Attributes
When you start using contexts to control your applications, you may find the need to store context specific data. There are two
types here, parameters and attributes. Parameters are defined in jetty.xml and are read-only to your servlets Whereas attributes
can be created, edited, and destroyed on the fly within your servlet code. Figure 7 shows how to define parameters in jetty.xml.

You can take control over the EM context and assign it to a specific hostname,
localhost for example, and in doing so, ensure that the EM is only accessible on the
physical machine or to a user logged in with remote desktop or a VNC connection.
Figure 5 shows a modified entry in jetty.xml that limits EM access to localhost.

The example in Figure 5 tells Jetty to allow access to the EM only through the
specified hostname, localhost. You cannot even access it using the IP address

Figure 5. Restrict Enterprise Manager access

Figure 6. Contexts with a path

unless you add another host entry such as <host>192.168.0.99</host>. How
cool is that?! In addition, the hostname can be a subdomain like bbjem.juniper.com.

OK, so it’s clear that you can set a hostname for your application contexts but...

What is the Path all About?
In addition to the hostname, a context has a
path that really means the top of the context.
We can create several contexts that are all
accessible through the same hostname but
have different path entries. Look at Figure 6
and examine this more closely.

These context entries are the standard entries
created automatically for you. Because none

Figure 7. Context parameters in jetty.xml

Figure 8. Reading application context parameters

Your servlets have access to these parameters
and attributes through the new BBjJettyContext
object. The use cases are beyond the scope of
this article but the examples in Figure 7 are fairly
self-explanatory.

The BBjJettyContext class provides access to
the parameters and attributes within the context.
You can obtain a BBjJettyContext class from the
HttpSession, and the code sample in Figure 8
demonstrates how to read a parameter in your
BBj Servlet.

Remember that parameters can only be read by
your servlets and if you need to store information
in the context, then you should use attributes.
Attributes stored in the BBjJettyContext are
available to all servlets in your application, and
are shared between requests and sessions. That
means that the attributes are globally available to
all visitors of the web application whereas session
attributes are just available to a single user.

Using Java Elements
We have opened up the Java world too as
Java provides some features that you may find
useful. To incorporate Java elements into your
application context, create a session classpath
through the EM in the usual way and specify the
classpath in the context by adding a classpath
element as shown in Figure 9.

Figure 9. Adding a classpath to the Context

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

You can add third party Java servlets, context listeners, and request filters directly into your Jetty Server without having to
use another application server. Figure 10 shows an example of how to setup Java classes.

Figure 10. Adding Java elements to the Context

These are common elements of a Java web application. The specifics about how to write them and what you would use
them for are well beyond the scope of this article. But when the need arises, they can be incorporated seamlessly into a
custom context. Add a <j-servlet>, <j_filter>, or <j_listener> entry to define the components.

Sometimes a Java servlet needs initialization parameters and these can easily be added to the <j-servlet> tag as shown
in Figure 11.

Figure 11. Passing initialization parameters to a Java servlet

Summary
By introducing contexts, BASIS now allows you to take better control of how you deploy your Jetty Web Server applications
by supporting multiple hosts and providing ways to restrict access to applications. Nevertheless, the good news is that you
don’t have to do anything unless you feel the need. Leave jetty.xml alone and everything will continue working the same
as it has always done up until now. However, even if all you do after reading this article is restrict access to your EM, then I
will consider this article to have been a great success.

System Administration

100

Download and run the code samples

http://links.basis.com/14code
http://www.basis.com/barista-overview

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 101

 B

Language/Interpreter

Richard Stollar
Software Developer

Wash up With SOAP Web Services
Now with rich data structures and authentication
Wash up With SOAP Web Services
Now with rich data structures and authentication

Let’s suppose that we want to publish a web
service that deals with customers, but the
customer record is rather complex, and the
main customer record has sub records for the
address and the contacts. Figure 1 shows how
this might look.

In our structure, Address and Contact are
complex subtypes, and there could be many
contacts records per customer. Okay, so maybe
it’s not that complex but it does serve to illustrate
the point.

BBj® web services received a facelift, which allows you to build web services that handle more complex data structures as
well as collections of records. This article presents a brief tutorial on how to create a SOAP web service that uses custom
Java types in the parameter set to extend your web service offerings. We have also added Basic authentication access and
will show you how to use it. At the end of this article you will find an URL where you can download the examples.

An Overview on Enhanced Data
You can design a typical BBj web service to have parameters of the standard BBj data types BBjString, BBjNumber, and BBjInt,
but you may require a greater variety of types. Enhancements to BBj 14.11 now make it possible to create a web service that uses
Java types on the parameter list, providing a richer web service capability.

Customer		 Address		 Contact
BBjInt	 ID 		 BBjString	 Street	 BBjString	 First Name

BBjString	 Name	 BBjString	 City		 BBjString	 Last Name

Address	 Address	 BBjString	 Zip Code	 BBjString	 Job Title

BBjVector	 Contacts	 BBjString	 State	 BBjString	 Phone

						 BBjString	 Email

Figure 1. Record structure for Customers

To achieve our goals of having a web service that can deal with this data structure,
we’re going to have to complete several steps.

 1. Create the main web service BBj application.

 2. Configure the web service in Enterprise Manager.

 3. Create a set of JavaBeans that represent the data structure.

 4. Configure a classpath for the Java classes.

Additionally, we’re probably going to need to do the following:

 5. Create utility methods for filling the Java data structures.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc102

Language/Interpreter

Before we get into all of that, let’s look at how the web services work to understand why we need to do this.

BBj Web Service Classes and Deployment
BBj web services rely on wsgen, which comes with Java. The wsgen tool parses the web service implementation class and
generates the required files for web service deployment.

For wsgen to function, it needs to have access to the required Java classes through a classpath that’s used during
execution.

You have two real options for how to provide wsgen with the classes needed.

	 Option 1: Create a .jar file that contains the classes.

	 Option 2: Add the folder where the classes were generated in the classpath.

For many reasons, including the fact that a .jar file is far more portable that a whole bunch of class files, Option 1 is the
preferred method when dealing with deployment. However, during the development phase, Option 2 is easier as you don’t
need to recreate the .jar file whenever the code changes.

So, you’ll have a project in Eclipse that holds the Java source files and the corresponding class files will be generated into
a bin folder, and this is what we’re interested in. For example, C:\Work\Examples\JavaBeans\bin\, but it may vary for you
based on the location of your project’s bin folder.

Crossing the Bridge from BBj to Java Web Service
When you develop your web service in BBj, there’s a certain amount of magic that goes on behind the scenes. Your BBj
program, however simple or complex, needs to be wrapped up with a Java implementation. Through Enterprise Manager,
you specify the prototypes for your web service’s methods. These prototypes are used to generate a Java web service for
your BBj code. That front-end web service is sent to wsgen; as mentioned earlier in this article, to generate all the classes.
Finally, the web service is deployable.

Creating the Main Web Service
Writing the web service’s code is beyond the scope of this article and much depends on your requirements. In general
terms, it is a BBj program with one or more entry points that each perform some part of the web service’s functionality.

Figure 2 shows a small piece of BBj code for a getCustomer() method in a web service.

This sample creates a customer record with static data, adds the
address, and creates a vector containing two contact records
which it then converts to an array using a utility class and adds to
the customer record. It completes a record with fixed data whereas
your web service will most likely be database driven.

Configure the Web Service
Configuring the web service is done through Enterprise Manager
as normal, at least up until the point where you need to specify the
parameters for your service methods. Rather than selecting the
type from the dropdown list you can enter the fully qualified name

Figure 2. Sample web service code

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 103

Language/Interpreter

Figure 3. Specifying a custom class

Creating the Java Classes
We need to create a set of JavaBeans that represent our data structure. A JavaBean is a special type of class that encapsulates
many objects into a single object (the bean) and, unless your classes conform to the JavaBeans specification, you won’t be able to
use them in your web service.

Again, I don’t want to go too deep into explaining how you should go about creating JavaBeans as the downloadable example
should give you all you need. It’s beyond the scope of this article to cover how you should write the JavaBeans for the data, just
remember that the classes must be serializable, have a zero-argument constructor, and allow access to properties using accessor
(getter and setter) methods; this makes them a bean. Figure 4 shows sample BBj code for the Customer record.

of your class as the parameter type. In our example the fully qualified class name is com.acme.beans.Customer.
Figure 3 shows this in action.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

Dealing With Collections
Our Customer record has many Contact records. From BBj’s perspective, these contacts are held in a BBjVector but when you
want to fill the Java object with the contents of the BBjVector, you’ll need to transform the data into an array of objects of the
specific class. Enter the need for a utility class I mentioned earlier that will handle this.

Using a utility class on the Java side can be a valuable tool as you can create all sorts of standard methods for converting data.
When you have a collection of objects you’ll probably need to have a suitable converter similar to the one shown in Figure 6 which
transforms an array of objects into an array of Contact objects.

Figure 6. Converting an array of objects into an array of Contact objects

Your BBj program will use this method to convert the BBjVector into an array of Contact objects as follows:

 customer!.setContacts(Util.makeContactArray(vect!.toArray()))

Add Basic Authentication
Authenticating clients to a web service can be a rather involved process but thankfully doesn’t have to be. If you use the
HTTPS protocol for deploying your web services then Basic authentication (introduced for preview in 14.12) should be

104

Language/Interpreter

Setting Up the Classpath
You can choose to add a .jar file to your classpath through Enterprise Manager. To do this:
 1. Pick BBj Services > Java Settings from the left menu.
 2. Select the ‘Classpath’ tab.
 3. Click the [+] icon above the ‘Classpath Names’ list.
 4. Enter a meaningful name for the classpath entry; I chose service.
 5. Click [OK] to save it.
 6. Ensure that your newly created classpath entry is selected and then click the [Add a Jar] icon above the ‘Classpath 		
 Entries’ list (to the right).
 7. Locate the jar file and select it with a double-click or by selecting it and clicking [Open].

Finally you need to add the same entries to the <default> bbj classpath entry and here’s how:
 8. Select the <default> classpath entry in the list of classpath names.
 9. Click the [Add a Jar] icon above the ‘Classpath Entries’ list, locate the jar file and select it as before.

Alternatively, you can manually add the classes folder to your classpath in your bbj.properties file. It’s important to remember
that all classpath entries must begin with basis.classpath. Here is an example of what it should look like:
 	 basis.classpath.service=C\:\\Work\\Examples\\JavaBeans\\bin

Adding the Classpath to the Context
BBj 14.11 introduced contexts for the deployment of your applications, which is outside of the scope of this article but there is more
information in this issue’s Don't Put All of Your Jetty Eggs in One Context.

Figure 5. Adding the classpath to the context

You’ll need to decide the context to which we’re deploying our web service
and add the appropriate classpath element to its configuration in jetty.xml.
For now, let’s deploy our web service to the main bbj root context and add
the classpath element to the context entry shown in Figure 5.

Adding the classpath to the context is important as the web service
generation will fail without it because this classpath entry is passed to wsgen.

Figure 7. Example authentication routine

sufficient and it is widely used. The username and password are encoded in
the HTTP request header and then validated server-side.

Applying validation to your web service requires you to write a custom routine
in your web service implementation which has three parameters. The input
parameters are username, password and a response to indicate if validation
was successful or not. Figure 7 shows a simple implementation, but in a real
world you might be validating the user through a database or some other source.

http://links.basis.com/14jetty

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

Configuring the client application is beyond the scope of this article, but most SOAP test tools provide ways to supply credentials
for Basic authentication.

Remember that Basic authentication sends the username and password in a non encrypted form. It is by itself very insecure, but
becomes secure when used in conjunction with the HTTPS protocol.

Summary
As you have read, creating more complex web services is much easier as you can now take advantage of rich SOAP web services
to send and receive complex data structures as well as collections of records. Your web services will be easily accessible to a
range of client technologies and conform to well-known standards.

105

Language/Interpreter

• Check out the example available for download at www.basis.com/14code

• Read Don’t Put All of Your Jetty Eggs in One Context

• Download and run the code samples

Figure 8. Setting the authentication in Enterprise Manager

The final step in this process is to configure the authentication routine through Enterprise Manager. Simply enter the name of your
authentication routine in your web service’s ‘Authentication’ field as shown in Figure 8. In this example, that would be myAuth.
Finally, deploy your web service and away you go!

http://links.basis.com/14code
http://www.basis.com/14code
http://links.basis.com/14jetty
http://www.basis.com/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

usiness BASIC is only as effective as the developer using it, hence our continued commitment to strengthen developers’
skills. Through the years, we have provided a variety of opportunities to enlighten and equip developers to use our tools
so they can be successful. Keeping pace with ever-changing technology, BASIS has hosted a myriad of these learning
opportunities for developers skill growth:

	 • Reference materials - online Help, Knowledge Base articles, and The BASIS International Advantage publication
 	 • Live - classroom training, TechCon conferences, and regional TechView seminars
 	 • Virtual - Java Breaks and hosted trainings

BASIS Presents a New Opportunity!
The BASIS E-Learning Center, a new educational opportunity is now available dynamically across all time zones. This self-
paced, on-demand training solution meets your educational needs wherever you are, which is an ideal way for you to achieve the
necessary training to become most effective in your trade. After all, who wouldn’t want to be successful providing well-tuned, user-
friendly, robust solutions that meet your customers’ precise needs and generate a sustainable revenue stream?

Go to elearning.basis.com and take a test drive with the Training Prep course to see how this portal works. Look at any of the 15
courses and their descriptions that cover each building block – Language, Development Tools, Database Management, System
Administration, or all the bundles in our ERP building block solution, AddonSoftware®. The most popular courses thus far have
been the AddonSoftware training courses; the other very well-attended courses are Report Writing With Jaspersoft Studio and
BBJasper and Barista® Application Framework.

Come and go as you like with the time you have available in your busy schedule, using the computer and Internet connection of
your choice ... from home or office, on the road, or at your local coffee shop.

While E-Learning courses are priced the same as our online hosted courses, with free attendance to Preferred Partners,
E-Learning offers an additional advantage by giving you direct control of your experience. You can start the course when you wish,
according to your schedule and at your own pace, pausing and playing back at will for a truly personal experience. You can also
post any questions that arise during your training to a monitored online discussion forum.

The Buzz
Feedback on the E-Learning experience has been superb. Marco Poblete, President of Poblete Consulting Services LLC, whose
company had an early test run with the portal and shares their very positive experience. “BASIS’ new E-learning portal is a great
resource to our company as we evolve our line of services and products. The portal allows us to learn how to improve the look-
and-feel and efficiency of legacy BBx applications.” Poblete continues, “Having the opportunity to schedule our training time at our
convenience enables us to continue working with our customers while learning the new features of the BASIS Product Suite. The
greatest advantage is that we can review the session whenever we want at a time and pace that is most convenient to us!”

After you have tried one of our on-demand E-Learning courses, please share your feedback with us.

Looking Ahead
As BASIS continues our commitment to training, we will add more online courses as well as schedule hosted courses for those who
still prefer real-time interaction with the trainers. Whether you are new to the BASIS community or just want some strengthening
and enlightenment, visit the E-Learning Center to find the course that is right for you. Whichever is your preference, come-and-go or
hosted online training, be on the lookout for new offerings to help you become a more efficient and stronger developer.

By Amer Child
Digital Communications/
Web Developer

 B

On-Demand Enlightenment at the
BASIS E-Learning Center

On-Demand Enlightenment at the
BASIS E-Learning Center

106

http://elearning.basis.com/
http://links.basis.com/basishelp
http://www.basis.com/knowledge-base
http://www.basis.com/advantage-index
http://www.basis.com/java-break-basis

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

Try it Out
	 1. From elearning.basis.com, click ‘Training Prep’.

	 2. Click ‘Enroll Me’, ‘Log in as a guest’.

Summary
If taking time out of your busy schedule to sharpen your skills has been difficult in the past, we have
removed that hurdle. E-Learning meets you where you are and eliminates the scheduling conflicts and
time allotments that may have been obstacles in the past. There’s always value in knowledge, so start
strengthening your skills today with E-Learning!

Check out our training offerings
 • E-Learning Center
 • BASIS Training
Visit our online reference material and other resources
 • Online Help
 • Knowledge base articles
 • The BASIS International Advantage
 • Java Breaks archives

107

http://elearning.basis.com/
http://www.elearning.basis.com
http://www.basis.com/training
http://links.basis.com/basishelp
http://www.basis.com/knowledge-base
http://www.basis.com/advantage-index
http://www.basis.com/java-break-basis

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

	

	 3. Follow the instructions listed for the course!

Before you can enroll in the next class, create an account as prompted. Once you have an account, simply log in
to enroll in future courses.

108

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc

We had great attendance at our sessions and it was good to see old friends and customers,
and meet new ones. We also had time for offsite customer visits in the Minneapolis area to
have that invaluable face-to-face time.

The OSAS development team is hard at work with all of the exciting features they presented at
the conference, and we are in-step with them to ensure they have the tools and support they
need to get the job done. Well done, Open Systems, Inc., for another informative conference!

ugust 11-14, 2014 marked the return of the Open Systems, Inc. Partner and Customer conferences. After many years in Las
Vegas, OSI decided to bring the conference back to their home in beautiful Minneapolis, MN, at a new Radisson property
adjoining the Mall of America. With over 520 stores, an indoor theme park, Legoland, comedy club, and many other attractions,
the mall provided a great venue for after conference hours entertainment and additional options for entertaining conference

attendees. Per Wikipedia, the mall receives more than 40 million visitors annually, the most of any mall in the world. It was impressive!

Dr. Michael Bertini (Owner/CEO) opened the conference with a message
on embracing change. Dr. Bertini’s message states, “Both competition
and technology are pushing users to re-think their business processes.
The need to mobilize and collaborate beyond the back office is creating a
significant shift within our client base. Not only are they embracing change,
but they are pushing us to provide innovative products and services. This
clearly challenges us to become much more agile to effectively deliver
products and services that will meet our clients’ ever-changing objectives.”

BASIS understands the ever-changing technology world, and the need
to meet these challenges every step of the way. Our perseverance is
constantly providing our developers with more deployment options, tools, utilities, and wizards. These continual additions are proof
of our commitment to the community to meet the developers’ and users’ ever evolving needs.

Our sessions featured the BASIS Dashboard Utility that BBj 14.0 includes at no additional cost. Showing the developers how to easily
implement the Dashboard in any version of OSAS or embed a dashboard widget into most any application generated a lot of enthusiasm!

Developers can now meet the business executives’ request
for timely access to key information in order to make important
business decisions. And, not only did we announce this new
feature, but the OSAS development team also announced their
commitment to implement dashboard widgets and demonstrated
that they’ve begun the work. It was exciting to see our new utility
feature being implemented so quickly.

Mobile Computing was another focus for our sessions. The ability to deploy in a browser and mobile devices is meeting the
user’s need to become increasingly mobile and flexible. It allows them to react and make time sensitive decisions from anywhere!
Browsers are the new cross-platform solution; BUI applications can be deployed for BASIS-authored and non-BASIS systems
alike. We presented tips and techniques for employing cascading style sheets and developing for the smaller screen real estate of
smartphones and mobile touch devices.

By Gale Robledo
Account Manager

OSAS Partner and Customer Conference
 A

109

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

By Bruce Gardner
Technical Support
Supervisor

BBj Logs Revisited

ine years have passed since our first Advantage article spotlighted the details of BBj® logging. BBj has
grown immensely during that time with the addition of powerful new features such as data replication, BUI,
the Jetty web server, and auditing. BBj logging has necessarily kept pace with the changes, as has the tool
used to manage them ‒ the Enterprise Manager (EM). With that, it seems time for a fresh look at how BBj

manages the logs and where to find them.

Q: Where are BBj’s installation logs located?
A: BBj’s installation logs now appear inside the user’s home directory, in a directory named BASIS as shown below,
where <username> is the name of the user account used to install BBj.

 Windows		 Mac				 Linux
 %UserProfile%\BASIS

If you encounter installation problems, the BASIS Technical Support team will request the following logs from this
BASIS directory:
 • install.log
 • install.properties

Q: Where can I find BBj’s run-time logs?
A: The default location for BBj’s run-time logs is <bbjhome>/log. BASIS Support will often request all of the logs
in this directory. In addition to providing clues about any errors that are occurring, the logs in this directory provide
important information about memory usage, important property settings, JVM version, and much more.

Q: How do I send the logs to BASIS Technical Support?
A: Just zip the entire log directory and email it to support@basis.com. The more information you can send, the
better. Occasionally, you may see a large <PID>.hprof file in your log directory; EM can generate this manually or
it can occur on its own if BBjServices encounters memory problems. Ask whether to include this before proceeding.
If the attachment is too large to send via email, you may upload the file to our secure server at upload.basis.com.

Q: How do I compress the log files into a .zip file?
A: All modern operating systems have a utility that allows you to compress files or folders.

 Windows
 	 • Use the File Explorer to navigate to your <bbjhome> directory.
 	 • Right-click the log directory and select Send to > Compressed (zipped) folder.
 Mac
 	 • Use Finder to navigate to your <bbjhome> directory.
 	 • [Ctrl]+click the log folder and select ‘Compress’ log.
 Linux
 	 • At the shell, navigate to the <bbjhome> directory.
 	 • Type the command: tar cvzf log.tar.gz ./log

 N

 /Users/<username>/BASIS

110

 /home/<username>/BASIS

http://upload.basis.com/
support@basis.com

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 111

Q: How do I review the logs and what am I looking for?
A: You can view various logs directly in the ‘Enterprise Manager/Log Files’ module. You will notice that separate
logs are created for each individual service (see Figure 2).

Figure 1. Log settings in BBj’s browser EM

Q: Can I change the location of these log files or any other settings?
A: Yes, you can change the location, as well as such settings as the maximum log size and log file rotation
frequency. Occasionally, BASIS Support may ask you to change the debug levels for some of the logs. Make
these changes in EM under the Settings module.

Figure 2. Viewing the BBj logs in the Enterprise Manager Log Files module.

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

If you’re encountering SQL problems, take a look at the <bbjhome>/log/SQLServer.log.<date>. Problems with
the BBj PRO/5 Data Server®? Look at the <bbjhome>/log/BBjPRO5DSServer.log. The new EM even enables
searching for occurrences of text using matches or regular expressions. This is very powerful and has a number
of uses. For example, you can quickly find out which programs should be SAVE’d in an updated format simply by
filtering for the word ‘Upgrading’ (see Figure 3).

Figure 3. Filtering BBj log content by keyword

112

BASIS engineers strive to empower the end user by providing meaningful, human-understandable logging whenever
possible. Once you’ve identified an error that coincides with your BBj problem, search our website for the error. Our
support team is continuously creating and updating Knowledge Base articles, providing solutions to common errors.

Another resource is the BBj Developer list (subscribe at www.basis.com/discussion-forums). In operation for over ten
years, a quick search of the list for an error will often turn up a thread in which someone else has encountered the
same error. If a new problem has suddenly cropped up in your deployment, try comparing the current logs to those from
previous days. You’ll often find the hint you’re looking for to resolve your problem.

Q: When Tech Support asks me to perform a “thread dump” or “heap dump,” what are these
 dumps and how do I create them?
A: Thread Dump: This log contains information about the threads and processes currently running and can be a
 very helpful troubleshooting tool. To generate the thread dump, right-click the server name in EM and select
 ‘Dump JVM Threads’ (Figure 4). BBj then writes the thread dump information into the Debug.log.[date].# log file.

 Heap Dump: This log is useful for analyzing memory-related problems in the Java stack. To generate the
 heap dump, right-click the server name in EM and select ‘Dump Heap’ (Figure 4). The file usually writes out to the
 <bbjhome>/log directory in the following form: memoryDump<PID>.hprof.

Figure 4. Performing a Thread Dump or Heap Dump from the Enterprise Manager

http://links.basis.com/discussion

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4links.basis.com/14toc 113

Q: I am having problems with my Web
Start application, which logs should I
provide to BASIS Technical Support?
A: Java Web Start is the most popular
method of deploying BBj thin clients. If you
encounter problems with your Web Start
application, you should send the server-side
logs mentioned above and the Java Console
output from the client. The Java Console is
enabled under the Advanced setting in the
Java Control Panel as follows:

 1. In the ‘Java Control Panel’, click the
 ‘Advanced’ tab.

 2. Expand the ‘Java console’ option.

 3. Select ‘Show console’ (see Figure 5)
 and click [OK].

When running the Web Start application the
next time, a Java Console similar to Figure 6
will appear. Click [Copy] to copy the contents
of the console to the clipboard and then
paste the contents into a new document in
your favorite text editor.

Summary
Today’s BBj logging capabilities are stronger
than ever before, providing a clear picture of
the everyday workings of a BBj deployment.
If you are unable to read the tea leaves, the
BASIS Support team stands ready to help.
Remember, when in doubt, send more files
instead of less!

Figure 5. Java Control Panel Advanced Settings where the
Java Console is enabled

Figure 6. Sample Java Console output

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 8 • A u t u m n 2 0 1 4 links.basis.com/14toc

Arrive a few days early to experience the Albuquerque International Balloon Fiesta,
the most photographed event in the world!

Photo Credit: Albuquerque Convention & Visitors Bureau.

“The content is always excellent, my head reels with the
possibilities! What I find more valuable than anything is
getting the face time with the engineers. During lunch,
before and after classes. It's personal and that's what
makes it great!” — Don Goslin, Heilind Electronics, Inc.

“It was really cool to meet the customers face-to-face that
I ‘talk’ to on the lists and answer all their questions in
person. They always give me a lot of great ideas.”
 — Jeff Ash, BASIS Engineer

TechCon2015 is Coming!

Mark your calendar today!

October 12-14, 2015
Albuquerque Marriott Uptown

TechCon returns to Albuquerque, in the Land of Enchantment and home
to BASIS’ headquarters. New Mexico is at its finest in October as TechCon
convenes on the heels of the Albuquerque International Balloon Fiesta,
when the weather is stellar and the trees are in full color.

	 • Three days of “Java Breaks on steroids”
	 • Two days of face-to-face classroom training
	 • Network opportunities with colleagues and BASIS
	 personnel and subject matter experts

	 • Minimal investment for MAXIMUM gain

	14bdtprefs.pdf
	Untitled
	BDT

