
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3

By Brian Hipple
Quality Assurance
Supervisor

 I
f you attended TechCon2013, you saw a demonstration that provided a REST-like
Web Service for access to our Chile Company database. Servlets in general help
to overcome latency and bandwidth limitations through a platform independent
protocol implementation because all the work happens at the server and only the

answer traverses the network to the client. This particular BBjServlet demo showed a
BBj® program implemented as a BBjServlet, leveraging the HTTP protocol to provide
responses from individual URLs to various clients. The demo’s functionality included
the ability to get a list of customers in multiple formats, including the ever-popular
JSON (www.json.org) format, and the ability retrieve a particular customer’s balance as
illustrated in Figure 1. This article delves deeper into the demo’s source code, providing
a working example of one possible way to take advantage of the BBjServlet’s capabilities
by providing web-based content to a variety of disparate clients.

Figure 1. A web browser accessing the published service with sample URLs

Figure 2. The beginning of the servlet implementation code

Scrutinizing the Source
Let’s take a closer look at the code necessary to run this demo.

The servlet implementation, an excerpt of which appears in Figure 2, begins by
creating a BBj custom object, then obtains a servlet data object and registers for the
ON_WEB_CONNECTION event in order to handle the incoming HTTP requests.

62

Language/Interpreter

BBjServlets Serving Web ContentBBjServlets Serving Web Content

links.basis.com/13toc

http://documentation.basis.com/BASISHelp/WebHelp/servlet/bbj_servlet_overview.htm
http://www.json.org/
http://links.basis.com/13toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3

Figure 3. The beginning of the myServlet class

As covered in a previous
Advantage article, Rest Easy -
End Your WSDL Struggles
(links.basis.com/12rest), clients
access the servlet with an
HTTP GET request. Therefore,
the customer method of our
servlet is able to ascertain
what information the client is
requesting by examining the
HTTP request’s path information.
The BBjServlet also supports
URL parameters, providing an
easy way for a client to refine
further their communication with
the servlet. The third sample URL
from Figure 1 shows how the
client may include a parameter to
specify a unique customer in the
database by providing the desired
customer number.

The custom myServlet! class,
referenced in the Callback code in
Figure 2, is accessed whenever
a client makes a connection to
our published application. The
beginning of the myServlet!
class definition is shown in
Figure 3, and illustrates how the
class’s customer method obtains
the HTTP request and creates an
HTTP response object based on
the provided BBjServletEvent. Figure 4. The servlet code that sends the list of customers to the client

The servlet handles each client’s HTTP request by performing the appropriate SQL query to the Chile Company’s customer table
in order to retrieve the requested data. The servlet then builds a response and sends it back to the client by writing to the JSERVLET
channel. Figure 4 shows how the servlet handles a GET request for a list of the Chile Company customers in JSON format.

The code begins by calling a getCustomers() method, defined later in the source code, that executes an SQL statement and returns
a java HashMap data structure with the list of customers. It then builds the string result by iterating over the HashMap, adding the
customers into a JSON array object. When it has finished creating the string representation of the JSON response, the servlet sends
the result to the client by printing the string to the JSERVLET channel.

Making Your Own Servlet
To make a BBjServlet available to clients, follow these three easy steps:

Create the application configuration. The BBjApplication object requires configuration information such as the
program to run, which config file to use, and the working directory. The BBjAppConfig object encapsulates this program
information and stores it so that the program can run as a servlet in an automated fashion. This is much like an autorun
program or scheduling task.

Obtain the servlet registry. The BBjServletRegistry manages all currently running servlets and assists in publishing
BBjAppConfig objects at specific paths. The registry is obtained from the BBjAdmin, in which administrative rights are
required to add and remove servlets to and from the built-in Jetty Web Server.

Publish the servlet. Simply select a path, which starts with “/servlet/,” and publish the application using the
BBjAppConfig and BBjServletRegistry objects obtained in steps #1 and #2. As clients connect to the service, new
interpreters start up to handle the request and are pooled, depending on load. As the load declines, these interpreters
will shut down. Licenses are only checked out during request handling.

1.

2.

3.

63

Language/Interpreter

links.basis.com/13toc

http://documentation.basis.com/advantage/v16-2012/12rest.pdf
http://documentation.basis.com/BASISHelp/WebHelp/bbjevents/bbjservletevent.htm
http://documentation.basis.com/BASISHelp/WebHelp/gridctrl2/bbjapplication.htm
http://documentation.basis.com/BASISHelp/WebHelp/gridctrl2/bbjappconfig.htm
http://documentation.basis.com/BASISHelp/WebHelp/gridctrl2/bbjservletregistry.htm
http://documentation.basis.com/BASISHelp/WebHelp/gridctrl2/bbjadmin.htm
http://links.basis.com/13toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3 links.basis.com/13toc

HTTP protocol makes it the most attainable way to share data and
business rules with disparate systems. When your next project
calls for applications to communicate over HTTP, think BBjServlet!

Figure 5 shows the source code that encompasses all
three steps.

Accessing Your Servlet
Any HTTP enabled application or tool can perform servlet
invocation, including web browsers as shown in Figure 1.
For the scope of this article, we are going to write the client
in our favorite computer language, BBj. The BBj application
provides a user interface shown in Figure 6, which allows
the user to select the desired Web Service function to
invoke from a listbox.

Upon user selection of a servlet function, the appropriate
request creates an HTTP client using the functionality
provided in the Java org.apache.commons.httpclient
package. The request then executes, and the response
returns and is displayed in a static text field, as shown in
the code excerpt in Figure 7.

Figure 5. The code required to publish a servlet

Figure 6. Our Web Service client written in BBj

Figure 7. An excerpt of the client code’s SWITCH statement that communicates with the Web Service

Summary
As you can see, it takes very little code to create a servlet
program and associated client programs. The fact that it
is stateless and is built on a well-known and easy-to-use

For more information, refer to Rest Easy - End Your WSDL Struggles at links.basis.com/12rest

64

Language/Interpreter

http://hc.apache.org/httpclient-3.x/apidocs/org/apache/commons/httpclient/package-summary.html
http://documentation.basis.com/advantage/v16-2012/12rest.pdf
http://links.basis.com/13toc
http://links.basis.com/13code

