
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3

ur bodies are extremely efficient at processing the food
we eat so that our internal workings run proficiently.
If you are like me, when I work around the house like
cleaning the gutters and mowing the lawn, I always

look for the fastest and easiest way to accomplish those tasks.
After all, the faster I can get a task done, the more time I have
for more pleasurable activities! I might even look for more
creative ways to perform those tasks and take advantage of
new technologies. For example, instead of walking to work a
few miles away, I might drive a car or take public transportation,
or even work “virtually” by way of the Internet.

So why would BASIS do anything different with its products?

The Challenges
In prior versions of BBj®, we used an API called “Remote
Messages” that passed information between the server and
client for character user interface (CUI) displays. Originally,
these remote messages passed character data from the
server to the client in the form of Java strings stored as bytes.
As BBj began to grow in functionality and expand into other
world markets, we discovered that an array of bytes was not
the same as a string that contained character values with
those bytes. This problem first surfaced when our European
customers used the Euro character (€). The Euro character

 O
displayed differently depending on the character encoding in
use, e.g., ISO-8859-15 vs. UTF-8, thus changing what the user
saw depending on their configuration. This means that the
client and the server must use the same character encoding in
order for characters to display correctly on the client and to
ensure that characters typed on the client transfer faithfully
to the server.

Each Remote Message also required an explicit class to
store the data. In some cases a Remote Message required
an additional response class, doubling the amount of code in
BBj. Correctly creating a new Remote Message meant jumping
through many hoops of implementing specific interfaces and
methods. This excessive “boilerplate” code required to even
implement a single message became difficult to maintain and
use. It was too clunky, which lead to further compromises
and inconsistencies within the code as the years passed and
development progressed.

As we created more messages to handle increasing
functionality, the data sent between the client and server grew.
This led to communication problems as our customers began
to switch to higher latency mobile networks and distributed
systems. In a market where the need to stay competitive is
paramount, this excessive communication over a high latency
network could have detrimental effects on our future products
becoming too slow and impractical for distributed mainstream
business or personal use.

The compromises inherent in the original Remote Message
API led to a poor abstraction in the CUI subsystem between
channels and devices. Developers expect an OPEN on two
distinct aliases to produce two distinct SysWindow devices.
Applications can also open the same device on different
channels. Each channel has its own isolated state and
operations. To address this issue in the original implementation
of CUI, the client maintained a map of CUI instances that
resulted in unnecessary sharing between devices on the client.
It was not feasible to put this information into the server because
of the limitations of the Remote Message infrastructure.

By Aaron Wantuck
Software Engineer

By Adam Hawthorne
Software Engineer

links.basis.com/13toc

BBj’s CUI Gets a Big Performance BoostBBj’s CUI Gets a Big Performance Boost

51

Language/Interpreter

http://links.basis.com/13toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3

Users can clearly see these enhancements. If they use the
SysConsole with a Web Start program or the TermConsole to
start any character based application in BBj, they experience
an average improvement of around 25% and a much more
consistent interface.

Summary
Enhancing product performance is an ongoing activity at BASIS,
along with analyzing new ideas for further improvements. Using
these future concepts, we can further decrease lag, add more
features, and increase the responsiveness of our products,
allowing more time for other tasks to run unnoticed. If you think
of code as a living entity that is constantly adapting to new
stimulus, there is so much more to learn and improve over
time. We’ve seen tremendous adaptations in the medical field,
greatly improving from the dark ages to today with such modern
discoveries as previously unheard of organ transplants and
artificial hearts, to name a few. With software still in its infancy,
at just a few decades old, just think what we can do to improve
it in another 10 or 20 years!

Figure 1. The new implementation of RMI (red) and the old implementation of
Remote Messages (blue) in a high latency environment (USA-Europe)

Learn more from these reference materials:
 • The Java EE 5 Tutorial at links.basis.com/javaee5tutorial
 • Java RMI Tutorial at links.basis.com/javarmitutorial

Furthermore, since changing the contents of a Remote
Message became such a daunting task, it became necessary
for the server to provide the client with an up-to-date view of
its server-side environment. Since the source of the state was
decoupled from the consumer of that state, the server simply
sent all the necessary data instead of only what had changed
or what was absolutely necessary. This added to the network
overhead as any change to the environment required the
server to send another large message to the client so its view
of the server-side state would remain consistent.

These issues cried out for a more efficient solution.

The Solution
BASIS experienced similar problems in SYSGUI, the
graphical user interface, several years ago. At the time, the
engineering team designed a generic library modeled after
a Java technology called RMI (Remote Method Invocation).
RMI enables developers to write object-oriented code
so that objects on different computers can interact in a
distributed network. However, the Java RMI design requires
a response for every remote method call, which significantly
increases the latency of every operation, especially on a
slow network. BASIS adapted the architecture of Java RMI to
overcome these inherent performance penalties by relaxing
restrictions so remote methods may execute without
requiring a response. RMI then sends these asynchronous
messages in batches, further reducing the network overhead.
The library automates as many of these optimizations as
possible to reduce the burden on developers.

This simple design of automatically mapping a single
method call to a message eliminates the need for extra
code and extra objects to implement a single message.
Adding a new message is as simple as adding another
method to a pre-existing RMI interface and then providing
the implementation in the remote class. A developer needs
only to consider what operations are actually necessary, and
can spend more time perfecting the implementation than on
producing the infrastructure.

In CUI, since the individual channels are instances on the
server and two channels can easily communicate with the
same client device, the client does not have to maintain
a “map of instances” any more. If the client requires any
information, the server can preemptively send the data to
the client just by adding another parameter to a remote
method. This completely eliminates the need for the server to
continually refresh the client's view of its state. If a particular
message requires a particular piece of server state, the
server simply sends that single piece of information as a
new method parameter. It reestablishes a proper relationship
where the server now handles all the device and channel
information.

The Results
As a result of all these changes, the user can enjoy faster
response times since there is a drastic reduction of network
traffic, and BASIS can enjoy cleaner and easier code
maintenance. In fact, everyone can enjoy the benefits of this
win/win situation.

Neither the server nor the client transfer character data in the
native platform encoding. All character data is sent as standard
Java String objects, using the ubiquitous UTF-8 character
encoding. It is no longer necessary to configure the server
and client to have the same character encoding, and both the
server and client require less work to translate String objects
back and forth into the native platform encoding.

The graph in Figure 1 shows the results of the new
implementation of RMI (red) and the old implementation of
Remote Messages (blue). The tests ran a total of fifty times;
five sets of five each for RMI and Remote Messages. Each set
contained an average time for its set, providing five points for
both RMI and Remote Messages. The resultant data was then
plotted on the graph, clearly showing marked improvement in
the new code. Note that the RMI time never exceeds that of the
old remote message time.

52

Language/Interpreter

links.basis.com/13toc

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
http://links.basis.com/javaee5tutorial
http://links.basis.com/javarmitutorial
http://links.basis.com/13toc

