
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3

ou have probably experienced this dilemma at least
once in your career. Somewhere along the way, a well-
intentioned person made a change to your product’s
code that introduced a nasty bug. At the time, you

didn’t discover it because the code compiled just fine and
everything seemed to run okay. Then on a dark and dreary day,
a customer crashed into this rather major bug and promptly
reported it to you. The customer discovered the bug long after
you had made extensive changes to the code. Rather than
keeping those changes and trying to patch them, it would be
ideal if there was some way to just back the bug out of the code.

But how do you back a bug out? Is there a simple way?

If your code is just a set of files stored in a single location on
the server, you have no choice but to try to patch the bug. If
you keep backups, you can restore the file from a previous
point in time, as long as your backups go back far enough and
you know when someone made the offending change...exactly
why developers invented source control. Source control
systems keep backups of your precious files with a record
of when changes were made, what files were changed, how
the file content was changed, and who changed them. This
makes recovery from this scenario possible and in most
cases, very easy.

Source code control has been around in some form since the
1960’s. There are a lot of choices out on the market today
including Subversion, Microsoft Team Foundation Server,
Mercurial, and Git, to name a few. If you work with any kind of
files containing valuable information that changes over time,
you will find source control invaluable since it allows you to track
your changes and revert if necessary. This article takes a close
look at how Git benefits BASIS and what it can do for you.

 Y

By Shaun Haney
Quality Assurance
Engineer

BASIS has Git
Bug Control,
Get Git too!

Git, a Distributed Source Control System
Linus Torvalds, the chief architect of the Linux kernel,
developed Git out of necessity to maintain the Linux kernel in
a source control system. The nature of the Linux kernel project
differs from a lot of single-company commercial projects, as its
source is developed by various highly distributed contributors
all over the world simultaneously.

To accommodate this extreme development environment,
Torvalds developed Git as a distributed version control
system, able to quickly process and compress large volumes
of code, with support for parallel code development. The way
this works is that people who want to contribute source to the
archive get their own full copy of the archive. The archive is
relatively small compared to the amount of code it actually
holds. Each version or “commit” in the archive is just a
collection of differences or “deltas” from the previous version.
Users can update their individual archives from another
archive, usually the original archive, by performing a “pull”
from that archive. Likewise, once users have changes they
would like to contribute to another archive, they can “push”
their changes to that archive.

If users are working on long-term changes, they can create
their own “branch.” Creating a separate branch allows a user
to safely create and test changes without affecting the master
branch. Once a user is sure that his changes are safe to
incorporate into the master branch, he can merge in those
changes.

Because of these features, Git has proven a valuable source
control solution for the Linux kernel project. In the spirit of open
source, Git is not only available to Linux kernel contributors, but
to anyone who needs a distributed versioning system.

Git for Version Control
For BASIS, Git is an extremely valuable tool for source
control for the AddonSoftware® project. This past June, BASIS
converted the long-standing AddonSoftware Subversion
(SVN) archive to Git because its development spans several
companies with valuable contributions from multiple VARs.
In addition, Git supports local version control and switching
between branches, both of which satisfy critical needs in
this environment. Developers get their own full copy of the
repository and create a branch for the feature they add. As
they continue to develop, they update regularly from BASIS’
repository and push their feature back to BASIS’ repository
when it is ready. While SVN supports branching, Git puts
the entire repository on the developer’s local machine to
allow quick and seamless switching between branches using
the same working directory. This avoids having separate
directories for each branch that require individual updating.

Git for Preserving Customizations
Through the Upgrade Cycle
Git also serves as a valuable tool to help AddonSoftware
partners preserve and update their vertical applications or
customizations through the upgrade cycle. BASIS provides
a read-only central Git repository that contains each major
AddonSoftware release. When AddonSoftware partners want
to upgrade their customers’ installations with the new release,
they clone the BASIS repository and roll it back to the same

79links.basis.com/13toc

http://subversion.apache.org/
http://www.visualstudio.com/products/visual-studio-online-overview-vs
http://mercurial.selenic.com/
http://git-scm.com/
http://links.basis.com/13toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3

Summary
Git is more than a versioning tool; it’s a robust tool for anyone
who needs to keep their own sets of code or to merge files.
BASIS developers and AddonSoftware partners find Git to
be a valuable multi-purpose tool with strong capabilities that
dramatically improves their productivity.

Whether or not you use Git as your ultimate source code
control tool, version control is an asset in all development
environments, from the single developer to large, distributed
networks. With all of the excellent choices available, everyone
can find the tool that best suits their needs and begin reaping
the benefits of version control. Once you make the transition,
you will wonder how you ever lived without it!

version that their customer has. Next, the partners add their
verticals or customizations to the repository, then pull all the
revisions, including the very latest release from the central
BASIS archive. During the pull, a merging process takes
place that updates the partner’s verticals or customizations
where needed. They can then port the upgraded vertical or
customized version back to their customer’s AddonSoftware
installation and continue to reuse the cloned archive as
the starting point for future upgrades. In this way, Git
allows AddonSoftware partners to maintain their vertical or
customizations through upgrades, making the overall upgrade
process dramatically easier and, more importantly, affordable
to the customer.

Imagine how much easier it would be to keep your vertical
current with the annual upgrades from the original vendor if
your source code control system could automatically manage
the upgrades after your first integration. That is what Git does
for you; you never have to struggle through an upgrade again
and your customers can benefit from every new upgrade and
security release with ease.

Git for You
In addition to Git’s capabilities for large multi-party projects, Git
certainly benefits smaller companies and individuals as well.
Benefits include basic source control, speedy updates, local
development, branching and merging support, and integrated
support in the Eclipse IDE (links.basis.com/eclipse).

Read ‘Git’dy Up Developers! at links.basis.com/12git

“Git” Started Now
Keeping your code under versioning control with Git sounds like a great idea. What do you need in order to get
the process going?

 • The Eclipse IDE comes with EGit, which has the tools you will need in order to work with Git repositories.
 Find information on how to get Eclipse and our plug-ins at links.basis.com/eclipse

 • Learn how to use Git in the IDE, at wiki.eclipse.org/EGit/User_Guide

 • Apress provides an excellent book on Git at git-scm.com/book

With these readily available resources, you can have a Git repository going and start preserving your
precious code today!

Basic source code control. As mentioned in the
introduction, any non-trivial project benefits highly from
source code control. Source code control gives the
developer the ability to back out changes or at least identify
a specific change when product development has gone
awry. The more frequently you check in your changes,
the more you benefit. Most modern source code control
systems offer branching and merging, allowing you to
introduce drastic changes to your product that temporarily
break everything for you without affecting anyone else so
long as you’re checking it into your own branch.

Speedy updates. Git is a very fast, efficient system.
Because of the way Git stores differences, you can often
clone an entire repository in Git in as much time as it
takes to check out a single revision in SVN. Even better,
after you first clone the archive, any updates to or from
another archive only consist of differences, making the
transaction speedy.

Local development. Unlike many other versioning
systems, you do not need access to your central
repository to check in changes to Git. You can continue to
check in changes to your local repository and push those
changes to the central repository once you have network
access again.

Branching and merging. Modern versioning systems
support branching and merging, but Git excels at it.
Since the entire repository is available to you locally, you
can seamlessly jump between or create new branches
as needed. Whenever you switch between branches,
the checkout of the branch is always in your working
directory. In centralized versioning systems like SVN,
you need to check out the desired branches from the
central repository, keeping each branch in its own
directory. With Git, creating your own branch is easy
and highly recommended if the change involves multiple
files or blocks of code. Once you’re ready to merge your
changes in, Git remembers where you branched and
tracks the changes accordingly. In fact, if you change a
line of code in your branch, and someone else makes a
different change in the same line in the source branch
from which you created yours, Git notes the conflict and
prevents these changes from overwriting each other.

Support in the Eclipse IDE. BASIS has developed
Eclipse plug-ins, introduced at TechCon2013 – the BBj
Enterprise Manager and BASIS Development Tools.
The Eclipse IDE also comes with EGit that provides Git
integration with Eclipse for easy check-in or updating of
the source within the IDE when working with BBj code.

•

•

•

•

•

80links.basis.com/13toc

http://www.basis.com/eclipseplug-ins
http://www.basis.com/eclipseplug-ins
http://www.eclipse.org/egit/
http://links.basis.com/12git
http://wiki.eclipse.org/EGit/User_Guide
http://git-scm.com/book
http://links.basis.com/13toc

