
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3

Language/Interpreter

 O

links.basis.com/13toc

By Adam Hawthorne
Software Engineer

Mix 'n Match Data Structures
Between BBj and Java

So how much do
you have left
after buying a

little app?

ne of the key advantages of BBj® is its seamless
integration with the Java platform on which it runs.
Developers can use Java objects within their BBx®
applications as though they were native BBj objects.

But on the rare occasion, a developer must use some of
the more advanced features of BBj to deal with a semantic
mismatch one may encounter between BBx, a language with
a 30-year lineage, and Java, having a far briefer teenage
lineage. This article discusses some of the tips and tricks as
well as some recent improvements to the BBj version of the
BBx language and in the BBj API that provide help in these
situations.

Character Encoding
When two countries with different languages share a border,
there is always an area where the two cultures clash. The
issues surrounding character encoding between BBx and Java
is similar at multiple levels.

The term "character encoding" would be better called "character
transcoding." A character set (or "charset") defines a mapping
between a range of integers and a set of symbols that each
represents an atomic unit of written language, known as a
"character." A character encoding defines the algorithm by
which the integers from a given charset are then encoded as a
sequence of 8-bit bytes, and also by which a sequence of bytes
are then decoded back into valid integers in that charset.

The engineers who created Java chose to use the Unicode
character set as their mapping between integers and symbols.
Unicode strives to assign a number to every distinct character.
Internally, Java must represent the integer associated with
each character as a sequence of bytes. Java does this by
representing each integer as one or more 16-bit characters in
a character encoding known as UTF-16. These characters are
held in an object called a java.lang.String, or a "Java String."

BASIS created BBx before Unicode was even a twinkle in
its creators' eyes, in a simpler time when 64KB really was
enough for anyone. The idea of using two bytes for every
character would have been an unthinkable waste of space,
and the state of the art was to use an encoding in which, at
most, 256 character symbols could each be represented by
a single byte. This relationship between bytes and characters
became an assumption on which much of the language and
tools depends even today. The familiar string variable X$, literal
string constants such as "abcdefg," and hexadecimal string
constants such as 61626364656667 are all stored internally as
a sequence of 1-byte values.

Ten bucks and
9.999999999999996

 cents!

58

http://links.basis.com/13toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3

Figure 1. Summary of the different methods and their uses

BBjAPI::asBytes(string)*	 Obtain an instance of the
				 Java byte[]object that represents 	
				 a BBx string.

BBjAPI::toLocal(string)	 Obtain the unmodified encoding for 	
				 characters obtained from a
				 java.lang.String.

BBjAPI::toUnicode(string)	 Obtain a pure Unicode
				 java.lang.String for a byte[] or 	
				 BBx string.

new String(byte[], String)	 Create a java.lang.String 	
				 interpreting the byte[] argument with
				 a specified encoding named by the 	
				 String parameter.

String.getBytes(String)	 Create a byte[] or BBx string
				 value using a particular encoding 	
				 named by the String parameter

 METHOD 			 DESCRIPTION 			 USE/RATIONALE

There may be two methods with the same name; one that takes a
java.lang.String and one that takes a byte[]. Use the result of
this method as an argument to select the one that takes a byte[],
otherwise BBj will use the method that takes a java.lang.String.

BBj will automatically convert any BBx string value passed to a
method that takes a java.lang.Object to a java.lang.String.
This conversion can result in a loss of data, especially if the data
is not textual in nature. Use the result of this method to avoid any
automatic conversion for a java.lang.Object parameter type.

BBj converts bytes that do not map to a valid character in a particular
charset to a special range of characters in Unicode called the
“Private Use Area”. These characters appear as UTF-16 values
0xE0FF-0xE1FF. Using this method prevents a String containing
characters in this range from being translated back into potentially
valid byte values. This might be important if the data in the String
represents something other than character data and should not be
modified in any way. Each encoding has a unique byte sequence
to represent a character that does not have a valid encoding. For
Cp1252, this is the byte value 0x3F, which corresponds to the
question mark character‘?’.

BBj converts bytes that do not map to a valid character in a particular
charset to a special range of characters in Unicode called the “Private
Use Area”. These characters appear as UTF-16 values 0xE0FF-
0xE1FF. Using this method prevents this translation from occurring,
and any invalid bytes will be replaced with the replacement character
value 0xFFFD. This could be useful for determining that a certain
sequence of bytes is invalid character data.

Use this if you are receiving byte[] data from another source and
the byte[] might have been generated using a different charset than
the platform charset. E.g., consider a situation where a Windows
computer generates byte data using the Cp1252 charset, and inserts
that data into a data file. Then, the data must be used on a Linux
server using the ISO-8859-15 charset. Use this method to transform
that data into a java.lang.String: str! = new String(x$,
“Cp1252”). Then, use toLocal(str!) to transform the java.
lang.String back into a BBx string.

This method creates a sequence of bytes using a specified character
encoding. For instance, assume one must create a document for
a partner using the UTF-8 character encoding. Once the contents
document exist in a string x$, one might use the following code to
obtain the UTF-8 bytes:
 y$ = toUnicode(x$).getBytes(“UTF-8”).
Then, write the string y$ to a file.

The boundary between Java and BBx where a BBx string of
bytes is converted into a Java String is hidden for the most
part by using the character encoding defined by the operating
system. On UNIX systems, Java uses the contents of the
LC_ALL, LC_CTYPE or LANG environment variables to
determine the default character encoding. On Windows
systems, Java uses the user's Control Panel preferences.

The Java notion of a capital "C" Charset includes an
encoding and decoding algorithm to convert from a sequence
of bytes that represent the integers corresponding to the
characters from that charset into a sequence of 16-bit integers
that represent those same characters in Unicode (and back).

When passing a byte-per-character BBx string value into a
Java method that takes a Java String, BBj uses the default
Charset to convert from those bytes into a Java String. When
returning a Java String from a Java method, BBj uses the
default Charset to convert from the String back into bytes.

This implicit algorithm has the potential to introduce
unintended behavior. However, combined with the Java
API, BBjAPI contains several methods to defeat or modify
the implicit behavior by which we can smooth over these
differences between the Java language and the BBx
language. See a comparison of the different methods in
Figure 1.

59

Language/Interpreter

links.basis.com/13toc

http://links.basis.com/13toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3

the output from this program:

Output:
 10.0999999999999996
 10.1

The value 10.1 cannot be represented as a finite sequence of numbers
in base 2. Neglecting to take that into consideration can produce
confusing results.

Java does not allow automatic conversions (called "narrowing
conversions") from a double to a float. BBj strives for consistency with
Java by disallowing an automatic conversion from a BBx numeric type
directly to a float However, the CAST() function allows a program to
perform this conversion:

Output:
 10.1000003814697266

For in-depth information describing the gory details of binary floating
point representation, visit tinyurl.com/czqwkr9.

Java Arrays
With more data comes more ways to interpret that data, even with
the most simple of compound data types: the array. BBx implements
an array type as a contiguous block of memory with metadata that
provides the information about the dimensional structure of the array.
Java arrays are implemented as nested "arrays of arrays," where each
element in any intermediate arrays may refer to an individual array. See
both storage layouts illustrated in Figure 2.

Numbers and “Business Math”
One of the original motivations for creating
Business BASIC was to address the sometimes-
counterintuitive behavior of traditional binary floating
point numbers. Binary floating-point data types favor
speed and a compact representation using base
2 arithmetic. Numbers using so-called "business
math," also known as "binary coded decimal" (BCD),
favor predictable, intuitive results using base 10
arithmetic that match calculations made by hand.
Since BBx uses BCD operations for real number
calculations, traditional BBx programs avoid the
confusion that arises from the behavior of binary
floating-point calculations.

The Java programming language, on the other
hand, derives much of its syntax and semantics
from the "C" family of languages, which exposes
the native binary floating-point operations of the
underlying hardware via its primitive float and
double data types. Now that BBj provides access to
the massive Java ecosystem, the differing behaviors
of the traditional and business approach to real
numbers may surprise BBx developers when using
libraries that expect Java double or float types.

BBj once again smooths over many these
differences by automatically converting from its
internal BCD representation to the binary floating
point representation. However, there are two
inconsistencies BBx developers should be aware of:

The Java float and double types cannot store
exact values for many common decimal values.
When converting from one of these floating point
types into a BBx numeric type, you may wish to
pass it to the ROUND() function first. Consider

1.

Figure 2. BBx and Java array examples

2.

60

Language/Interpreter

links.basis.com/13toc

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://links.basis.com/13toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3

Because of this mismatch, BBj converts from Java arrays to BBx arrays to help when interacting with Java. A method or
object variable that returns a Java array may be assigned to a BBx object array variable, e.g.:

The Java array is treated as a 1-dimensional array, regardless of the number of dimensions used to create it originally. The
elements of the BBx array may contain other Java array values.

BBjVector
BBj also provides the BBjVector class to bridge the gap between Java arrays and BBx syntax. Use BBJAPI().makeVector()
to obtain an instance of a BBjVector. BBjVector can be passed to any method that receives a Java array parameter, as long
as the individual elements in the BBjVector are all assignable to the component type of the array. For example, one may
use the String.format(String, Object[]) method to create a formatted string from Java. The following program:

produces the result:

The temperature is 68.2 degrees Fahrenheit.

The parameter vec! is automatically converted into an Object[].

Java Class and Package Names
Java packages, classes, methods, and fields may all begin with the underscore '_'. It is now possible to refer to these Java
productions from a BBj program. Here is the motivating example, supported in BBj 13.0 and above:

This feature also enables the use of an underscore at the beginning of a standard variable name:

Summary
BBj does most of the heavy lifting to hide the inconsistencies between BBx and Java. Most BBx applications never need
to concern themselves with the level of detail described here. But if these differences ever do cause your application or
your data to misbehave, this view behind the curtain can give you the tools you need to put it back in line.

Sit back and enjoy a
30-minute presentation

with BASIS!
links.basis.com/javabreak

61

Language/Interpreter

links.basis.com/13toc

http://links.basis.com/javabreak
http://links.basis.com/13toc
http://links.basis.com/13code

