
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3 links.basis.com/13toc

By Jim Douglas
Software Developer

ost Visual PRO/5® or BBj® GUI
applications are inherently BUI
applications. In the minute it
takes to configure an app in your

BUI app server, you're good to go. But a
working BUI app is just the first step. This
article covers some easy things you can do
to maximize the performance and fine-tune
the appearance to make it more like apps
that users expect of a web page and less
like a transplanted desktop application.

Getting Started
BASIS has already taken the first step: BBj
13.10 previews a completely redesigned
BUI theme for BBj 14. This new theme
includes hundreds of aesthetic and
functional tweaks to all BUI controls. On
touch devices, dialogues like MSGBOX()
and FILEOPEN() are better centered,
and some controls have been modified to
work better. For example, spinner buttons
are oriented horizontally to provide larger
touch targets. Even if you do nothing at
all, your BUI apps already look better than
ever before! Find out more details about
the new defaults in Default CSS Gets a
Makeover at links.basis.com/13css.

Performance
We first talked about bandwidth and latency issues with distributed applications in
The Lessons of BASIS b-Commerce (links.basis.com/00bcomm). Now, 13 years later,
these issues are still a major consideration with client/server applications. We touched
on this subject in The Anatomy of a Web App Makeover (links.basis.com/12webapp),
which looks closely at the BUI version of the BBj download page. When we design a
distributed application, the client and server work together to manipulate data, perform
calculations, and present information to the user. The communication between the
client and server can be broken down into three broad categories.

Category 1: Server to Client – includes methods like BBjEditBox::setText.
The BBj application running on the server sends data to the client without
waiting for a response. BBj automatically optimizes batches of operations in this
category to improve performance.

Category 2: Client to Server – includes event traffic like the ON_BUTTON_PUSH
event. For the most part, the client sends events to the server without waiting for
any sort of response. The event object typically contains additional parameters
relating to the event such as, for example, the width/height of a resized window,
or the x,y location of a moved window. Because this information is delivered to
the server as part of the act of delivering the event, it is immediately available to
the program as soon as the event is received.

Category 3: Server to Client to Server (round trip) – includes methods in
which the application queries the client for some dynamic information that
cannot be cached on the server. Methods like BBjEditBox::getText and
BBjCheckBox::isSelected fall into this category. When a BBj application
executes a line like name$ = editbox!.getText(), it comes to a complete
standstill while the server sends that request to the client, then waits for the
client to send back the response. As a rough rule of thumb, we usually assume
that each round trip like this takes at least 100 ms (1/10th of a second), but
it can easily be double that time, especially on a mobile device. And it gets
worse: If the application sends several messages to the client that don't require a
response (Category 1), followed by a single message that requires a response
(Category 3), the application must wait for the client to process all pending
messages, then respond to the final message that requires a response. In some
cases, this can add hundreds of milliseconds to the delay. If that round trip
hadn't been introduced, the client would have been able to continue working
through processing those backlogged messages while the application running
on the server moved on to new work.

BUI to the Max – Amp Up and Fine-Tune

 M

43

Language/Interpreter

http://documentation.basis.com/BASISHelp/WebHelp/commands2/msgbox_function.htm
http://documentation.basis.com/BASISHelp/WebHelp/commands/fileopen_function_create_file_open_dialog.htm
http://documentation.basis.com/advantage/v17-2013/13css.pdf
http://links.basis.com/00bcomm
http://links.basis.com/12webapp
http://links.basis.com/13toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3 links.basis.com/13toc

Figure 1. The BBjFormValidation demo

Figure 2. The getText results taking 3,292.4 milliseconds

Figure 3. The Form Validation results taking
only 5.91 milliseconds (557 times faster)

We can significantly improve application responsiveness by avoiding category 3 (synchronous round trips) as much as possible.
For example, we can change the ON_LIST_CLICK event handler for a BBjListBox from this:

to this:

In the first version, BBjListBox::getSelectedIndex forces a round trip back to the client, typically introducing a delay of 100
milliseconds or more. In the second version, BBjListClickEvent::getSelectedIndex retrieves the value that was delivered to the
server as part of the original event.

To see the effect of eliminating round trips, run the BBjFormValidation demo
(Figure 1) in the BBx BUI Showcase at links.basis.com/buidemos.

The program shows 14 controls of various types, with a navigator to browse
through 100 records containing randomly generated data. The UI is smooth and
fast; clicking the navigator buttons brings up records as fast as you can click.
The two big buttons at the bottom of the form implement two different ways to
retrieve the current contents of the form. The "Form Validation" button fires a
BBjFormValidationEvent, which captures the current values of all user-changeable
controls on the window. The "getText" button fires a BBjButtonPushEvent. In
response to that event, the application queries each of the 14 controls for their
current value. The difference in speed is dramatic.

The getText version takes at least 1.5 to 2 seconds, but can take several seconds
depending on the state of your Internet connection and the latency to the server
machine. When we ran the demo here at BASIS, the getText version took more
than 3 seconds, as shown in the title bar of the resulting dialog shown in Figure 2.

The Form Validation version (Figure 3) takes effectively no time. It has all the
data it needs as soon as the event hits the server, so it reports all of the same
information 557 times faster, in a scant 5.91 milliseconds (0.00591 seconds).

Touch Click
If you skim the source code (links.basis.com/formvalidation-code) for that form
validation sample program, you might wonder about this strange line:

 fast_touch_click$ = stbl("!OPTIONS","FAST_TOUCH_CLICK=TRUE")

In touch-oriented browsers, the user can double-tap anywhere on the screen to
zoom in and out. To allow for the possibility that any given tap might be the start of a
double-tap gesture, mobile browsers wait for about 300 milliseconds (0.3 seconds)
before reporting that a button was clicked. Most of the time, this isn’t a problem.
The slight delay is a tradeoff for the added usability of being able to double-tap
anywhere to zoom. But there are times when you want the user to be able to
rapidly click a button and have the program respond to the click immediately.

In the default mobile browser configuration, clicking a button twice within less
than 300 ms isn't interpreted as two clicks; it's interpreted as a double-tap gesture
to zoom the window. When specifying the FAST_TOUCH_CLICK option, button
controls (and the buttons in navigator controls) report click events immediately,
eliminating that 300 ms delay. (Of course, this has the effect of disabling the
standard double-tap-to-zoom behavior when the user taps directly on a button,
which is why it's a developer-configurable option, as opposed to standard BUI
behavior.) When selecting this option, the user is still able to double-tap to zoom
anywhere else on the form, just not directly on a button.

44

Language/Interpreter

http://documentation.basis.com/BASISHelp/WebHelp/bbjevents/bbjlistclickevent.htm
http://documentation.basis.com/BASISHelp/WebHelp/gridctrl/bbj_list_box.htm
http://documentation.basis.com/BASISHelp/WebHelp/winmethods/bbjlistbox_getselectedindex.htm
http://documentation.basis.com/BASISHelp/WebHelp/bbjeventmethods2/bbjlistclickevent_getselectedindex.htm
https://poweredbybbj.com/apps/sc-formvalidation
https://www.poweredbybbj.com/files/showcase/index.html
https://poweredbybbj.com/files/showcase/code/formvalidation.txt
http://documentation.basis.com/BASISHelp/WebHelp/usr/stbl_formats_bbj.htm#STBL-OPTIONS
http://links.basis.com/13toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3 links.basis.com/13toc

Figure 5. Surname sample running in BUI (Chrome)

Figure 6. Surname sample in BUI with some simple modifications

Figure 4. Surname sample running in GUI

From GUI to BUI
Let's take a small GUI app, run it in BUI, and see what we
might want to do to optimize it for the browser environment. For
demonstration purposes, we'll use a trivially simple application,
one that prompts for a last name, or surname, and displays
information about it. Figure 4 is the original version running
in GUI.

Pretty basic stuff – a BBjWindow with a BBjListButton to
select a surname from a list, a BBjEditBox to type a name
that might not appear on that list, a BBjButton that the user
can click to query the currently selected name (identified as a
URL on the button), and a BBjHtmlView to show information
about that name.

Figure 5 shows the same program running in BUI.

That title bar looks a bit out of place in a web page, and it
would be nice if we used all of the available space. So let’s try
a few tweaks:

Create the window with no title bar; optionally add a
separate Close button.

Maximize the window to use the full browser client area.

Use the NATIVE_BROWSER_LIST version of the
listbutton; it can provide a better user experience on
mobile devices.

Size and position all of the controls based on the
available space.

Add a resize handler to resize the controls when the
user resizes the browser (or changes the orientation
of a mobile browser).

Figure 6 looks much more like a standard web page, and less
like a desktop application running in a browser.

Now let's try it on a mobile device. This shows us one
more opportunity for improvement. In desktop applications
(both GUI and BUI), we can set the wait cursor to indicate
that the application is temporarily busy. Mobile devices
don't have cursors, so BUI offers another mechanism, the
BBjBusyIndicator, to indicate that the application is busy. We
can show the busy indicator when we set the wait cursor,
then remove it when we reset the cursor.

The iPhone on the left in Figure 7 shows how the busy
indicator looks on a mobile device. Notice that the
browser’s top URL Bar and bottom Button Bar consume an
appreciable amount of the already-limited screen real estate.
On most mobile devices, you can add the application to the
home screen with a few taps, which results in making the
BUI app look and feel similar to a native application. The
BUI app will then have its own icon on the home screen,
will run in “standalone” mode instead of in the browser,
and will take up the entire screen space except for the top

45

Language/Interpreter

http://documentation.basis.com/BASISHelp/WebHelp/usr/stbl_formats_bbj.htm#STBL-OPTIONS
http://documentation.basis.com/BASISHelp/WebHelp/bui/bbjbusyindicator.html
http://links.basis.com/13toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3

Figure 8. Sample code to set the custom BUI end action at runtime

Figure 7. Surname sample on a mobile device in the browser (left) and in standalone mode (right)

status bar. The iPhone on the right in Figure 7 shows the
Surname sample running in standalone mode from the home
screen. Because the NATIVE_BROWSER_LIST option was
set, you choose a surname from the BBjListButton by selecting
a name from the native iOS picker control in place of the
BBjListButton’s dropdown list.

The constrained viewport on mobile devices presents another
challenge compared to desktop devices. We should take this
into account and limit our display to just a few important items
when designing BUI apps for deployment to mobile devices.

We can also take advantage of another new BUI feature:
custom end actions. Custom end actions allow the developer
or system administrator to define what happens when the user
exits a BUI app.

When the program loads the selected surname, it can tell BUI
to chain to the URL for that name upon termination of the BUI
app in Figure 8. This code lets the user load a preview of the
name information into the htmlview on the BUI app page, then
go to a full-page view of that same information when closing the
BUI app page. This feature has many potential uses, including
building full application menuing systems in BUI.

Summary
BBj’s browser user interface has been around for several
years. Over time it has matured, and now runs faster, looks
better, and provides the application developer with several
new configuration and customization options. The addition of
form-level validation and more payload data in various events
significantly reduces client-server round trips, speeding up the
execution of remotely-deployed BUI apps and making them
feel more like local applications. BASIS has also added several
improvements to streamline and improve BUI apps running
on mobile platforms, including native message boxes and list
buttons, fast touch click detection, a built-in BBjBusyIndicator,
and the ability to easily create a fullscreen app without a
titlebar. Lastly, custom end actions give developers the power to
determine where their BUI app should take the user after it has
finished executing. BASIS’ browser user interface is an exciting
technology that continues to expand and improve. If you’ve not
begun to take advantage of it yet, now is the time for you to amp
up and fine-tune your BUI application.

• Refer to Default CSS Gets a Makeover at links.basis.com/13css
• Read about the BBjBusyIndicator and custom end actions in Automate BUI Deployment With the API at links.basis.com/13buiapi
• See more mobile-optimized sample applications in the entire BBj BUI Showcase at links.basis.com/buidemos
• How to add a BUI app to your mobile device’s home screen:
 • iOS: links.basis.com/iphone-addicons
 • Android: links.basis.com/android-addbookmarks

46

Language/Interpreter

links.basis.com/13toc

http://links.basis.com/13css
http://links.basis.com/13buiapi
http://links.basis.com/buidemos
http://links.basis.com/iphone-addicons
http://links.basis.com/android-addbookmarks
http://links.basis.com/13toc
http://links.basis.com/13code

