
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3 links.basis.com/13toc

oday's BBj® developer can
now generate documentation
quickly, easily, and accurately;
and formatted in the familiar

and modern look and feel of Oracle's
Javadoc tool. Like Oracle’s Javadoc tool,
BASIS' BBjToJavadoc generates API
documentation for BBj object-oriented code
in HTML format, completely automatically
from comments entered within the BBj
source code. What a great benefit it is for
object-oriented BASIS developers and
Java Developers to be able to interact
with both Java and BBj documentation
presented almost identically!

 T
BASIS now documents several of our APIs using this new BBjToJavadoc tool, which
automatically updates the published documentation as we add, remove, or modify new
classes, methods, and fields. For example, documentation for the new Email utility
classes now joins BBJasper, Dialog Wizard, and BBjToJavadoc in the Javadoc-like
format. In addition to generating more BBj documentation, the BBjToJavadoc utility
also includes other very helpful and important enhancements. This article introduces
these new BBj 14.0 enhancements that are now available in preview starting with
13.03.

Package Description
In Java, a “package” is the physical bundling of classes to logical units. In BBj, this
traditionally works with the PREFIX and other filesystem-based concepts. When
we previously documented BBj code, we set the package to “Unknown.” However,
we now use the notion of a package in the BBjToJavadoc utility to tag different BBj
classes as a logical group to appear together in the documentation. The idea is that
one of the source files in the package has package description comment before the
package statement, whereas the rest of the modules just have the package statement.

The package statement, which takes the form “REM package [name]”, has no
programmatic function. However, it is a very powerful documentation statement as
a single source directory can support more than one package. The Java paradigm
does not allow this, but it fits very well into the BBj paradigm. The associated package
Javadoc comment, located before the package statement, supports all Javadoc tags.

By Brian Hipple
Quality Assurance
Supervisor

How often does documentation get pushed down to the bottom of the list, getting done in a rush
after the new or modified code is finished, or perhaps not written completely, accurately, or ever?

89

Building Blocks

BBjToJavadoc
Documents

Your Masterpiece

http://documentation.basis.com/BASISHelp/WebHelp/utils/Email/package-summary.html
http://documentation.basis.com/BASISHelp/WebHelp/utils/BBJasper/package-summary.html
http://documentation.basis.com/BASISHelp/WebHelp/utils/DialogWizard/package-summary.html
http://documentation.basis.com/BASISHelp/WebHelp/utils/BBjToJavadoc/package-summary.html
Nick Decker

https://documentation.basis.cloud/WhitePapers/BBjDocsGeneratorUser'sGuide.pdf
Nick Decker

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3

Figure 1. Package statement in BBj object-oriented source code with Javadoc comments

Figure 2. Generated Javadoc documentation for the Email package

Figure 3. BBjToJavadoc usage showing new command line arguments

Figure 1 shows an example of the package statement and comment in BBj object-oriented source code and Figure 2
shows the generated documentation.

Command Line BBjToJavadoc
One of the most useful enhancements is the ability to run the BBjToJavadoc wizard from the command line. See Figure 3 for an
example of executing the utility with optional command line parameters.

In earlier revisions, this utility could only execute as a GUI wizard. BASIS now incorporates the calling of the command line
BBjToJavadoc in its continuous build system to generate the BBj utility documentation. This includes the Email, BBjToJavadoc,
DialogWizard, and BBJasper utilities. Anytime a developer checks in a source code change to the SVN archive for one of these
utilities, the BASIS build script automatically invokes the BBjToJavadoc utility that generates the updated documentation.

90

Building Blocks

links.basis.com/13toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3

Increased Performance
BASIS engineers devoted much effort to increase the processing speed dramatically in the latest version of the
BBjToJavadoc utility. What once took minutes to generate documentation for a large number of source files now
measures in mere seconds. In previous versions, the resultant documentation stripped such symbols as the “!”
mark and the “@”symbol. BBj now fully supports such concepts as using the ! mark as a suffix for object variable
names and the @ symbol in the declaration of client variables. These symbols now show up in the documentation
to allow for easy distinction of BBj server and client objects as Figure 4 shows.

New Linkage
BASIS now automatically includes linkage to the Java API documentation. When a BBj program uses a Java object
as a return value, a parameter to a method, or declares it as a field or variable, BBjToJavadoc creates the links
to the associated Java documentation. To establish linkage to a Javadoc set that isn’t part of the Java API, add
the -javadocargs -link arguments to instruct the utility to link that documentation to the generated BBj source
documentation. BASIS uses this capability in Figure 5 to link to the Jasper documentation when creating the
documentation of the BBJasper utility.

Additionally, developers can add @see in the source code to embed an example in the file as shown in Figure 6.

Figure 4. Documentation that includes a BBj server object (top) and client object (bottom)

Figure 5. Example of the linkage of Java andJasper class documentation

Figure 6. Using the @see tag to include example source code

91

Building Blocks

links.basis.com/13toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3

Google Search
The Javadoc documentation published on the BASIS website now includes our familiar Google search capabilities. This
search option appears by simply adding the appropriate header to the documentation, giving the user the ability to type in
keywords to search all of the BASIS documentation. Figure 7 shows the result of a search on “bbjasperreport.”

 For more information, read BBjDocsGenerator User's Guide

Figure 8. Filter for BBjToJavadoc documentation

Figure 7. The BBJasperReport documentation that displays as a result of a Google Custom Search

BASIS also provides a filter to specify the BBjToJavadoc documentation from the rest of the search filters. Figure 8
shows the result of this selection.

Summary
The BBjToJavadoc utility enhancements are great examples of how BASIS goes the extra mile to deliver a more and more
useful and efficient tool. This utility allows developers to add documentation as they write their BBj object-oriented code with
the code fresh in their minds, resulting in much more accurate and complete documentation. After all, this is far better than
writing it after the fact, or even worse, never doing it at all. As most will tell you, it is very hard to maintain or add functionality
to poorly documented code. Now, you can generate your own documentation, easily and quickly, directly from the code and
without the need to format or stylize it, or learn another tool. Your product is now more complete – documented accurately
and easily synced with the source code.

92

Building Blocks

links.basis.com/13toc

http://links.basis.com/13code
https://documentation.basis.cloud/WhitePapers/BBjDocsGeneratorUser'sGuide.pdf

