
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3

By Christine Hawkins
Software Developer

 O
ne of the strongest incentives for
developing within the Barista®

Application Framework is the
instant availability of new Barista

features and functionality to your
existing applications. Read on to learn
how you can provide configurable,
more sophisticated error handling in
your Barista applications, and how to
unleash the power of filtering in Barista
queries.

Console Access
Console access has long been one
of the most amazing benefits of
programming in BASIS’ interpretive

Barista Creations –
Add Your App, Stir, and Enjoy

BBx® languages. This is especially true when dealing with unexpected errors. This
powerful feature can be particularly handy when dealing with an application runtime
framework like Barista. With these new error-handling enhancements, Barista delivers
the troubleshooting control that developers have grown to expect from their BBx-
based applications.

Handling the Unexpected
Barista's messaging system already provides a robust mechanism for interacting with
users when an application encounters an anticipated error or processing anomaly.
Now, the process for handling unanticipated errors is enhanced so that Barista
application developers can configure and control access to the console as well as
error reporting options.

Three levels of error handling are available so choose the level that suits your needs.
Make your choice based on the type of system, e.g., production, demonstration, or
development, and the desired level of access that should be granted to users who
may encounter an unanticipated error.

 Strict:	 No console access is allowed.
 Authorized:	 Console access is permitted, but only if a password is supplied.
 Open:	 Console access is granted.

Strict Error Handling
Strict error handling does not permit any real-time debugging. Users may be able to
retry/resume processing if the error is due to a locked record or file, but otherwise
they must abort the process or send an error report. This is the mode that is in effect

links.basis.com/13toc

Building Blocks

16

http://links.basis.com/13toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3

Building Blocks

17

by default when launching applications via Web Start. Figure 1 shows an example of what happens when an unanticipated
error occurs in this mode.

Figure 1. Unanticipated error message showing detailed information about
the error

Figure 2. Turn off the Disallow Console setting in
the Servers tab of the BBj Services node

Figure 3. Sample code for calling the Barista error handler

Authorized Error Handling
If you want to permit access to the console in a controlled fashion, configure
Authorized error handling with two easy steps. First, remove the Disallow Console
setting in BBj using Enterprise Manager (see Figure 2).

Next, configure Barista to display a custom message, and accept a password
before allowing access, as shown in these lines from barista.cfg:

 set !CONEXIT=true
 set !CONMESS=Please provide the password for console access, or <enter> to retry:
 set !CONPASS=admin123

Authorized mode provides an additional [Debug] button on the error dialog so the console can be accessed once the user
supplies the correct password.

Open Error Handling
If there are no concerns about console access, use Open mode. Like Authorized mode, Open mode removes the Disallow
Console restriction in Enterprise Manager. However, with Open mode you do not enable the !CONxxx globals to prompt for an
additional password, so clicking the [Debug] button immediately drops the user to a console prompt.

To help developers in the debugging process, BASIS unprotected the code in several of the Barista form-related runtime
programs. This makes the debugging option available if an error occurs in one of these Barista programs when using
Authorized or Open mode. Although the code is unprotected for debugging purposes, this is not an invitation to modify it; any
modifications render the program unusable. Should a developer accidentally do so, the only recourse would be to restore the
original program.

Figure 3 shows code from an AddonSoftware® program that uses the Barista error handler. In this sample, if the code isn't
protected (as indicated by tcb(2)=0), then the text from the error line is fed into the handler. Once in the handler, if console
access is allowed and the error line text has been supplied, the [Debug] button will be included on the error message dialog.
Barista returns "ESCAPE" or "RETRY" if the user has pushed the [Debug] or [Retry] buttons in the message dialog, so the
program can take action accordingly, or do an exit or release if the user has opted to Abort.

Regardless of the error handling mode, users can always generate an error report and add them to Barista's Document
Processing Queue to email to the designated recipient. The error report form provides text input so users can describe
the run-time conditions surrounding the error, and also a checkbox for including a workspace memory dump as part of

links.basis.com/13toc

http://links.basis.com/13toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3

Figure 5. Inquiry grid showing a) Search box for quick filtering, b) multi-column sorting for State and Zip,
and c) a variety of ways to output the query results

Figure 6. Filter for customer zip codes beginning with "92" and in the state of "CA" or "OR"

Figure 4. Create Issue Report and optionally allow inclusion of a workspace memory dump

the error report. Developers or system
administrators can configure Barista to
allow or deny inclusion of workspace
memory dumps, or include them if a
password is supplied, as seen in Figure 4.

WHERE There's a Filter,
There's a Way
(to get the data you want)!
Inquiry
The inquiry system is perhaps Barista's
most popular built-in component.
Users can quickly and easily launch
inquiries on forms and individual fields
to find the data they're looking for, or
click hyperlinks to display complete
information for a coded field. In addition,
applications can tie into the inquiry
system with drilldowns and custom
queries. The queries themselves
are loaded with features for sorting,
searching, filtering, and exporting in any
of several formats (Figure 5).

Filter
If the basic sorting and searching
capabilities aren't enough, users can
take it further with the built-in filtering
tool. The enhanced point and click
interface in the filter tool makes it easy
to construct more complicated filters
across multiple columns, using
AND/OR conjunctions, various
operators, and parentheses for
grouping. Power users may even be
allowed to access the WHERE clause
for direct editing. And remember, any
number of filters can be defined and
saved, so a user may quickly recall a
filter to run the query again later, rather
than having to reconstruct it every time,
delivering mini-reportwriter functionality
to the user.

Figure 6 shows the filter tool in action.
Toggle the filter tool on or off by clicking
the filter button at the top right of the
query form. Create a filter by selecting
the desired column, operator, and value,
along with the desired conjunction. Click
the [Enter] button to add each filter
component of the resulting WHERE
clause to the box at the right. When the
clause contains all of the desired filter
components, press the [Execute] button
to run the query using the clause and
see the results.

Group
In Figure 6, the query results aren't
quite as expected. Some grouping is

Building Blocks

18links.basis.com/13toc

http://links.basis.com/13toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3

Figure 7. Refine the query results by a) using the arrow buttons to "scroll" through the WHERE clause and
b) add parentheses for grouping

Figure 8. With direct edit permissions, users can edit the text in the WHERE clause control

necessary to see to it that the value
specified for the zip code applies
across both states. Use the left
and right arrow buttons (Figure 7a)
to move back and forward through
the WHERE clause one unit or filter
component at a time. The wizard
fields automatically populate with
the column, operator, value, etc. of
the filter component with the "focus."
Then click the Left or Right radio
buttons followed by the [Enter] button
to add a parenthesis at the desired
location (Figure 7b).

In addition to being able to specify
the AND/OR conjunction and add
parentheses, the point and click filter
tool permits insertion or deletion of
filter components. Use the arrow
buttons in the Filter Wizard group
box to "scroll" to the desired filter
component, then press [Clear] to
remove it from the clause, or [Insert]
to create a new filter component in
front of the one displayed.

All users can see the WHERE clause
taking shape when working with the
point and click interface, but Barista
security options also make it possible
for power users or administrators
to edit the WHERE clause directly.
An additional STATE_CODE filter
component has been added directly
to the clause in Figure 8 by copying
one of the other STATE_CODE
filter components, then pasting and
changing the state to "WA." Even
with these permissions, the most
efficient way to build a filter is usually
a combination of point and click to
do the main construction, and then
direct edit for fine-tuning.

Building Blocks

19links.basis.com/13toc

http://links.basis.com/13toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 7 • D e c e m b e r 2 0 1 3

For more information, refer to Barista Error Handling at links.basis.com/errorhandling

Figure 9. Example of a saved filter

Figure 10. Case-insensitive search for "po" using new Search all columns option

Save a Filter
Remember, once users create and
test a filter to verify that it produces
the desired results, they can give the
filter a name and save it for future use.
If security settings allow the user to
create global filters, the Save as filter
for all users checkbox is enabled, and
if checked, all users will see the new
filter the next time they launch the
inquiry. Each saved filter appears in
the listbutton at the top right of the filter
form (Figure 9). Once saved, apply
a named filter by selecting it from the
listbutton, or clear filters by selecting
the first (blank) row.

To delete saved filters, select the filter
and then press [Delete] in the MDI
toolbar, or press <Ctrl+D>.

New! Search all Columns
Last but not least, is a new BBj 14.0
feature, previewed in 13.10. Barista
inquiry grids now offer accelerated
searching with a single click. Select the
Search all columns checkbox to look
for the specified Search text in any
column, as shown in Figure 10. This
can be a great time saver compared to
constructing a WHERE clause when
looking for the same text in multiple
columns. As with normal searches, the
full text search honors the configuration
setting for case sensitivity.

Summary
As Barista continues to evolve and
gain new functionality, so do your
Barista-built applications. The recent
addition of advanced and flexible
error handling give developers the
information they need to effectively
support their application. And the
addition of advanced query building and
editing capabilities to the often-used
inquiry system means that users will be
even more effective at finding the exact
data they need. Finally, the text search
across all columns feature will boost
your users’ productivity when using
your Barista-designed applications.
These compelling new additions add
value to your new or existing application
without any development effort on your
part, further solidifying Barista’s position
as a powerful application development
and runtime framework.

Building Blocks

20links.basis.com/13toc

http://links.basis.com/13toc
http://links.basis.com/errorhandling
http://links.basis.com/13code

