
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Making that many round trips to the client can be really
time-consuming, especially as network latency increases.
Our initial round of testing revealed what we had expected;
validating the contents of controls on the user’s browser
was very time consuming.

If only there was some way to avoid asking the client 17
times for information regarding the status and contents
of the controls on the form. Wouldn’t it be nice if the
interpreter could magically harvest all of the information
at once?

he BASIS Product Suite Download page, written years ago
with a mixture of Perl, HTML, JavaScript, and SQL, was
in great need of a makeover to address a growing list of
enhancement requests from our community. As a testament

to the complexity of this download page, its Perl code alone relied on
a long list of external libraries to integrate critical functions such as
CGI, database, email, FTP, SOAP, date/time manipulation, SSL and
cryptography, and MIME encoding integration. With code that spread
out over multiple files and various languages, this page became
increasingly difficult to maintain and add the user-desired features.
The time had come to rewrite it in a simpler, consolidated, and more
easily maintainable language that was capable of doing everything
the previous system could do and more to accommodate the
upcoming improvements. Our tool of choice – BBj®, of course! With
BBj’s built-in BUI functionality, it was an easy decision.

New Features
The new BUI (browser user interface) download page delivers a
nice list of new features available in its first release:

8

 T

• Localization for five different languages
• Locale auto-detection with the option to select a language
 at any time for real-time translation (see Figure 1)
• Build timestamp display
• Reduced amount of required contact information
• Dynamic build retrieval from an Amazon S3 bucket

By Nick Decker
Engineering
Supervisor

The Latency Test
Concerned about performance of the download page
under high latency conditions, we launched a copy of
our BBj production server’s Amazon EC2 instance in
Ireland. Surely, a distance of about 4,700 miles ought to
be significant enough to introduce some network delays
from the BBj interpreter in Ireland to our browsers in
Albuquerque! The average ping time from Albuquerque to
the West Coast production server was about 45ms, while
the ping time to Ireland was more than five times that
amount – an average of 245ms!

Latency can have a dramatic impact on any program where
the client and server must pass information back and forth.
In the case of the product download page, BBj was running
in the BUI paradigm, but the same would hold true for a
thin client deployment of the code. Even though the new
download page has fewer fields to complete compared to
the old page, the program running on the server still needs
access to the information in all of those fields. In order to
ensure that the user fills in the required fields appropriately
(Figure 2), and to make use of the information later in the
process to check export compliance, the BBj program needs
to retrieve the contents of the 17 form elements from the
client’s browser.

Figure 2. An example of one of the 17 required fields on the form

Figure 1. An example of the locale auto-detection

Language/Interpreter

The Anatomy of a Web App MakeoverThe Anatomy of a Web App Makeover

http://en.wikipedia.org/wiki/Common_Gateway_Interface
http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Amazon_S3
http://en.wikipedia.org/wiki/Amazon_ec2
http://links.basis.com/12toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Why BBj BUI Made Life Easier
Consolidating all of the underlying code for the download
page into BBj greatly simplified things. Some of the more
difficult aspects of the old download page, such as the export
compliance check, were much easier to implement in BBj and
required far less code. The old page built a SOAP message
from the ground up, creating headers, adding data to the
message body, and using specially coded routines to handle
more complex data types. In contrast, the new BBj version
of the download page utilizes a Web Service to accomplish
the same task. The code is simple and straightforward; add a
couple of jars to your classpath in Enterprise Manager (EM),
instantiate the Web Service client, put some properties in a
HashMap, and execute the runTransaction() method. The
BBj code (Figure 4) is succinct and provides a high level of
readability and maintainability.

available in both SYSGUI and BUI, so they will improve the
speed of many of your existing GUI applications. Figure 3
shows form validation in action.

Enter an Old Friend - Form Validation
It turns out that BBj has had a related paradigm already in
place for a traditional thin client deployment – BBjFormValidation
(see Input Validation - Veto Power at links.basis.com/05validation).
The concept of form validation has been around for as long as
the Internet itself. Because it becomes expensive to repeatedly
ask the client for information regarding the contents of controls
in response to user changes, web pages wait until the user
completes entering all the changes before validating the
fields. Once the user presses the [Submit] button, the program
proceeds to validate all of the fields on the form. Beginning
in version 12, BBj adds the same form validation that was
previously available in the thin client to the BUI paradigm.

Adding form validation is the first of two improvements that we
implemented to solve the download page’s latency problem.
While form validation allows the programmer to lock the form
preventing the user from making any further changes until the
validation has completed, it does not do anything to reduce
the number of round trip communications between the server
and the client. We addressed this second part of the problem
with a dramatic improvement to the BBjFormValidation event
itself; it now carries a payload of information with the state
and contents of the controls on the form. This means that
the programmer’s validation routine no longer has to ask the
client for the text in a BBjEditBox, or whether a BBjCheckBox
was selected or not. Instead of asking the client, which causes
network delays, the program simply retrieves the desired
information from the form validation event itself on the server.

Retrieving information from the Form Validation Event was so
useful and revolutionary, that BASIS made similar changes to
many other events unrelated to form validation. For example,
we augmented all of the BBjList events with information about
the control’s state. Previously, the BBj program registered for
the BBjListSelectEvent so that it could react to any changes
in the selection of a BBjList control. When the user selected
an item in the list, this action notified the program and would
then execute the callback routine or method associated
with that event. In most cases, however, the program would
immediately turn around and ask the control for the item in
the list that the user selected. After all, if the program cared
that the user selected an item in the list, chances are pretty
good that it also cared which item in the list the user selected.
Therefore, whenever the user selected an item in the list, the
event would result in another round trip question/answer from
the server to the client in order to find out the new selection in
the list control.

To eliminate that round trip, BBj 12 augments the BBjList
events with three new events:

 1. getSelectedIndex() - returns the currently selected item
 in the list
 2. getSelectedIndices() - returns a vector of all currently
 selected items in the list
 3. getSelectedItem() - returns the text of the currently
 selected item in the list

These new events allow the BBj program to respond to
a selection event in the list control and have all of the
information it will need ahead of time from the event itself.
BASIS also added these same improvements to other events,
such as BBjLostFocusEvent and BBjEditModifyEvent. It is
worth mentioning once more that these new methods are

9

Figure 3. Form validation makes it easy to ensure that
the user provides required information

Language/Interpreter

Figure 4. Excerpt of the export compliance BBj code

Several other routines were also significantly easier in BBj
compared to the previous version including validation, user
notification LightBox, and cookie management. One of the best
simplifications to the new program was to access BASIS data
files and databases natively. The old version, which relied on
Perl for the backend CGI language, used the DBI (database
independent interface) library for database access. This
required the DBD::JDBC module that works in conjunction with
a server written in Java to provide a DBI front end to a JDBC
driver, acting as a bridge between Perl and a BASIS JDBC
database. The end result is that we were able to eliminate
more libraries, remove the dependency on required run-time
processes, improve compatibility, and speed up data access in
the process.

Having all of the code in a single language and in a single
program not only simplifies the process, but makes the coding/
debugging/maintaining much easier as well. The old version
retrieved values from the browser via JavaScript, validated

http://documentation.basis.com/BASISHelp/WebHelp/events/form_validation_event.htm
http://en.wikipedia.org/wiki/Lightbox_(JavaScript)
http://search.cpan.org/~vizdom/DBD-JDBC-0.71/JDBC.pod
http://search.cpan.org/~timb/DBI-1.618/DBI.pm
http://search.cpan.org/~timb/DBI-1.618/DBI.pm
http://links.basis.com/12toc
http://links.basis.com/05validation

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Testing was Easier Too!
Because we developed the new download page inside the BASIS
IDE, testing this page was also very easy. Simply tapping the [F5]
key or clicking the [BB Execute] button instantly launched the
program in thin client mode. Adding a BUI definition for the app in
EM only took a minute, so testing it in BUI mode in a browser was
also straightforward. EM provides a link to the BUI app so sending
off a quick email to the BASIS QA department with the link greatly
facilitated testing efforts. Because a BBj installation includes a
fully-configured Web Server that is available when starting BBj
Services, the QA department could also check out the BBj program
and resource for the download page from our SVN source code
repository and then host and test the new page locally.

By contrast, testing the old download page was extraordinarily
difficult. We could only run the old page on a system pre-
configured with Apache Web Server, Perl interpreter, dozens of
external libraries and modules built from source code, runtime
Perl/JDBC bridge server, and more. Because setting up and
maintaining this server was so extensive and time consuming, it
was just impractical and extremely expensive to have more than
one development machine.

Comparing the Old and New Download Pages
One goal of BUI-izing the product download page was to reduce
the size and complexity of the form. Comparing the old and the
new pages side-by-side in Figure 6 shows our success; the new

them; sent them back to the Perl CGI program on the server,
which manipulated them in order to pass them on to the
export compliance services in a SOAP message, then inserted
them into a database. Not only do different languages like
JavaScript, Perl, and SQL each have a vastly different syntax,
but they also have different data types that can complicate
the passing of variables from a program in one language to
another program in a different language. Even comparing
data in JavaScript and Perl is very different; JavaScript uses
the != operator to test for inequality, while Perl only uses !=
when comparing numbers
and instead uses the ne
comparison operator when
the value is a string. Having
all of the code and data in a
single language reduces the
demands and requirements
for the programmer and
eliminates the need to keep
track of all of the special
rules for various languages
as illustrated in Figure 5. The
end result is a program that
is much more robust, less
prone to breakage, and far
easier to debug.

10

Language/Interpreter

Figure 6. Comparing the old (left) and new (right) download page

Figure 5. Consolidating everything 	
into a single language - BBj

http://links.basis.com/12toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

page is smaller, more compact, and eliminates unnecessary data such as “Fax Number” and unwieldy supporting controls like
the “US/Canada” and “Other” radio buttons and the various “If Other” text boxes. BUI’s integration of Cascading Style Sheets
also assists with making the form more visually attractive while extending the BASIS website theme, including the same fonts,
colors, and gradients, where appropriate.

New Features
One new feature of the BASIS Product Suite Download page is localization into five different languages. While the BUI
program uses the BBTranslator Utility to translate the controls in real time, BASIS used the new BASIS Resource Bundle
Editor (links.basis.com/rbe) to create and maintain all of the text in specialized resource bundles. When the program starts,
it first checks to see if the URL specifies a locale for the BUI application. If there is no locale in the URL, the program checks
for a past locale setting that it saved in a cookie. If that is not available either, then the program retrieves the locale from the
client’s machine.

Once the program has a valid locale setting, it calls a method to translate all of the controls. If the locale is not one of the
five supported languages, then it uses the default language, kept
in sync with English by the BASIS Resource Bundle Editor. The
user may also change the language at any time by selecting a
pre-populated option from the BBjListButton. The callback routine
for this list selection event retrieves the selected locale from the
BBjListSelectEvent to avoid a trip to the client, then calls the
method to translate the controls using the new locale. Figure 7
shows a portion of the page translated into Italian.

11

Language/Interpreter

Figure 7. The download page translated into Italian

BUI and GUI Mortgage Demo Optimizations
To illustrate how you might modify your GUI or BUI application to take advantage of the new form-validation’s payload, consider
how we applied the changes to the BUI
Mortgage demo. The original version of the
code calculated the payment information
when the user pressed the [Calculate]
button. The shift to form validation does
not change much in this part of the
code, just the event type for which the
button is registered. Instead of reacting
to the ON_BUTTON_PUSH event, we
now trigger form validation from the
button by registering for the ON_FORM_
VALIDATION event as shown in Figure 8.

The next change took place in the subroutine that executes when the user presses the [Calculate] button. To start with, we
retrieved the Form Validation Event into an object, highlighted in green in Figure 9. Because the event object contains all of
the information about all of the controls on the form, the next few changes deal with getting the contents of the various controls.
This is the most important part of the change
since it is where we eliminate all of the latency
overhead of making round trips asking the client
for information. This change is pretty simple, too.
Instead of getting the value of the myPrincipal!
InputN control directly, we modified the code
shown in Figure 9 to get the value from the form
validation event by referencing the Principal!
InputN control.

That sort of change continues on for the remainder of the input controls. Once the routine has processed all of the input values,
it updates the screen with the results. One
last change is necessary, as form validation
requires the program to accept or deny the
validation event. This is due to form validation
locking the top-level window from user
changes while the program processes the
form. In order for BBj to unlock the window
and allow additional changes to the form, the
program must call the accept() method as shown in Figure 10.

After making the changes in the program from querying the controls directly to using form validation, we ran comparison tests to

Figure 8. Changing the calculation button’s callback to trigger a Form Validation Event

Figure 9. Retrieving a field value from the validation event

Figure 10. Calling the accept() method to complete form validation

http://links.basis.com/12toc
http://links.basis.com/rbe

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

to the cloud via applications like Dropbox. This
capability allows you to download BBj from any
Internet-connected device with a browser and save
it to a single location in the cloud for subsequent
access by numerous machines.

Mission Complete -
Optimizations in Place!
Rewriting the BBj Download page was a smashing
success by any measurement. The resultant
new BBj code base was several times smaller,
easier to write, test, and debug than the old multi-
language code base. We eliminated several other
languages, libraries, runtime servers, machine
dependencies, and setup and configuration
complexities. The new download page is faster,
easier to navigate and use, and includes new
features such as localization and real-time
translations. Best of all, we accomplished all of
this with our own toolset, proving that that BASIS’
BUI technology is a perfect fit for your next web
development project.

• Read the BASIS Advantage article Input Validation - Veto Power at links.basis.com/05validation

• Learn more about the BBj methods and events mentioned in this article in the online documentation at
 links.basis.com/basishelp

• Optimizations do not end here - read more in this issue
 • Looks Better, Runs Faster at links.basis.com/12image
 • GUI, BUI Everywhere at links.basis.com/12gui

• The BUI Mortagage source code is installed with BBj as part of the demos package

Figure 11. Comparing the desktop and mobile versions of the download page

Language/Interpreter

12

a remote server to see the effect. Modifying the program to use form validation
turned out to be a winner, making the program more than 11 times faster when
retrieving the contents of the controls. That speed improvement resulted from a
test using a fairly low-latency connection with a server that was approximately
1,000 miles away with an average of 45ms ping times. In higher latency
scenarios, the speed improvement was even more significant.

Optimizing Layout - Screen Detection for Mobile Browsers
Initially, we embedded the new download page in an IFrame on the BASIS
website, which we built with a Drupal-based CMS system. The main page,
shown inside a desktop browser in Figure 11, contains the menuing system
as well as the left and right navigation bars. In order to maximize the space
available for the BUI application when running on a mobile device, we took
advantage of pre-written code available from detectmobilebrowsers.com. It
offers code in more than 15 languages to detect if the web page is being loaded
into a mobile browser or not. We inserted the PHP code into our Drupal page
and redirected the client to the BUI-only version of the app if viewing the page
in a mobile browser. This maximizes the amount of space for the application on
smaller devices such as tablets and smartphones.

Although it may seem odd at first to download BBj to a phone or tablet, many
mobile devices and operating systems offer the ability to save downloaded files

http://detectmobilebrowsers.com/
http://links.basis.com/12toc
http://links.basis.com/12gui
http://links.basis.com/12image
http://links.basis.com/12basishelp
http://links.basis.com/05validation

