
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

tests. By running the repeatable tests before we check in any code, JUnit proves that
the new code integrated with the existing code will not produce any unexpected errors.

The second level of defense, better known as the testbed, contains the test server and
client that we designed to establish that the actual product is fit for general release. The
test server is responsible for running BBj Services, displaying the GUI, and executing
the BBj test code. The test client’s sole responsibility is to log and record the information
obtained while the test server runs the code tests. This level of testing is similar to the
way BASIS developers test their own BBj applications.

So how do we actually use these tools? Well, the first step is to compile BBj Services
so that it runs properly on all the platforms that we support. Specifically, we take the
code that we checked in during our “first level” tests, compile it on the oldest supported
platform version, and then run BBj Services on the newest supported platform. For
example, Microsoft’s oldest supported OS is Windows XP while its newest released
OS is Windows 8. Therefore, we compile on Windows XP and run BBj Services on
Windows 8. The same would apply to Linux, UNIX, Solaris, and so on. This practice
ensures that BBj Services will not require the latest OS specific features and tags that
would limit backward compatibility. As a result, BBj Services can run on all platforms
supported by the operating system vendor.

The second step in our testing process is to write the BBj code that will execute the new
features. If you are thinking we just write a simple program to test the new additions to
our product, you are half right. The first BBj program usually tests the new feature itself
using our product documentation as a guide. The next several tests integrate the new
feature within our old tests to increase the level of complexity. In fact, many of the BBj
test programs appear as code samples in the online BASIS documentation.

Finally, we run BBj Services on the newest supported platforms with our test BBj code.
If the tests have a user interface, the UI will appear on the test server with the test client
logging the results of the tests. We then analyze the logs and review for corrections.
After making any necessary changes, we rerun the tests and repeat the process until it
is error-free.

Why go through of all this effort? This meticulous testing allows us to see the actual
code and controls in action on the screen as if we were running it in a real-world
production environment. As a company in the modern marketplace, BASIS is committed
to producing the most modern, up-to-date, cutting edge software, and strives to include
modern programming features. We take great pride in what we do and the test suite
ensures that we can accomplish our goals while continuing to meet yours.

he biggest bane of software
development is releasing a
product before it has been
properly tested or containing

an array of bugs caught only after the
release. At BASIS, our number one
priority is producing the best product
that we possibly can. Although we use
many tools to achieve this goal, the most
crucial is our test suite that we designed
specifically to test our code changes at
all levels of production to ensure that our
products are released with the highest
quality. We run the suite automatically
after a new build compiles, which begins
within 8 minutes of any checkin to the
SVN source code archive. Our current
test suite has two parts - JUnit and
testbed.

BASIS uses JUnit as our first level of
defense to ensure that any new code
development does not alter or affect
other parts of the code currently working
and operating within BBj® Services.
JUnit, originally written by Erich Gamma
and Kent Beck, provides an open source
tool that comes standard with Java
and is a simple framework for writing
repeatable tests. JUnit is an instance
of the xUnit architecture for testing
frameworks and contains three distinct
parts - assertions for testing expected
results, test fixtures for sharing common
test data, and test runners for running

For more information on
 • JUnit - refer to junit.org or download it from bit.ly/7ESsE1
 • Writing JUnit tests - visit bit.ly/SSaSh2By Aaron Wantuck

Software Engineer

 T

An Insider Look at BASIS TestingAn Insider Look at BASIS Testing

62

http://junit.sourceforge.net/doc/faq/faq.htm#overview_1
http://sourceforge.net/projects/junit/files/
http://junit.sourceforge.net/doc/faq/faq.htm#overview_1.
http://links.basis.com/12toc

