
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

DBMS

 A

By Jeff Ash
Software Engineer

BASIS SQL Gets Even Better

86

s databases evolve over the years, it often becomes necessary to add SQL
functionality. While SQL is a relatively standard language for querying databases,
various DBMS vendors often add syntax to their SQL not supported by all databases.
BBj® now boasts new SQL support for several SQL features supported by other

databases, as well as significant improvements to the way it handles SQL views.

Execute SQL/MySQL Script
The Enterprise Manager now allows an administrator to execute an SQL script on any
BBj database. Script files should be plain text and contain one or more SQL statements,
terminated by a semicolon and a new line. Statements can include CREATE and DROP
statements for TABLE, VIEW, PROCEDURE, INDEX, and TRIGGER as well as CALL,
INSERT, UPDATE, DELETE, ALTER, GRANT, and REVOKE statements. To execute a
script, click the button shown in Figure 1, located on the database Information tab.

Figure 1. Execute an SQL script file

This powerful feature also includes support of most MySQL syntax for creating, modifying,
and populating tables so administrators can easily import MySQL database exports into a
BBj database. When importing from a MySQL script, set the “CREATE TABLE File Type” to
ESQL as shown in Figure 2.

Figure 2. CREATE TABLE File Type Setting

ENUM Type
BBj 12 now supports the use of the ENUM type (Enumerated Type) when creating a table.
Note that this feature only works with ESQL tables as it relies on ESQL files’ constraint
capabilities. An ENUM type column's values are restricted to a set of explicit values
specified at the time of table creation. For example, the following statement creates a table
with an ENUM type:

CREATE TABLE my_table (id INTEGER PRIMARY KEY, gender ENUM ('M', 'F')) ESQL

This next statement generates an error because 'Q' does not meet the criteria for the
enumeration:

INSERT INTO my_table VALUES (1, 'Q')

This statement will succeed:

INSERT INTO my_table VALUES (1, 'M')

The new ENUM type guarantees data integrity as only valid information may be written to
the database.

REPLACE Statement
The REPLACE statement works just like INSERT with the exception that if the value
specified for the primary key in the REPLACE statement already exists, it simply replaces
the existing record with the new record specified in the REPLACE. For example, if ID is a

http://en.wikipedia.org/wiki/Enumerated_type
http://links.basis.com/12toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc 87

DBMS

primary key, the first statement would insert a new record
because it is new, while the second would change the
NAME to John.

REPLACE my_table (id, name) VALUES (10, 'Jeff')
REPLACE my_table (id, name) VALUES (10, 'John')

Using REPLACE is a great timesaver for developers, as
previously this would require one of the following multi-step
processes to accomplish the same thing.

1. Execute a SELECT statement to determine if the record 	
 already exists

 • If the record exists, execute an SQL UPDATE 	 	
 statement

 • If the record does not exist, execute an SQL INSERT 	
 statement

2. Attempt to insert the record by executing an SQL 	 	
 INSERT statement, trapping for an error

 • If the SQL INSERT failed because the record already 	
 exists in the table, execute an SQL UPDATE statement

DATEDIFF Scalar Function
The DATEDIFF scalar function returns the number of
days between two specified dates. Parameters can be
literal expressions or the name of a date type column; it
subtracts the second parameter from the first parameter.
For example, the following returns a value of 7:

SELECT DATEDIFF('2012-08-08', '2012-08-01')

Reversing the order of the parameters returns -7:

SELECT DATEDIFF('2012-08-01', '2012-08-08')

This simple-to-use scalar function makes it very easy to
perform this common date operation without the necessity
for writing any application code. Further, using a scalar
function to perform calculations makes it possible to use
the SQL statement in reports without the need for custom
report scripting.

Full Featured Views
Full featured views are a tremendous improvement
over the way BASIS SQL traditionally supported views.
Prior to full featured views, SQL views were limited to a
SELECT column list, list of tables, and a limited WHERE
clause. ORDER BY, LEFT JOIN, GROUP BY, etc. were
unsupported. However, full featured views support all
valid SELECT queries regardless of size or complexity
and were first available in BBj 12. By default, adding a
database to BBj configures that database to create
 full featured views. Figure 3 shows the setting
for enabling full featured views.

Figure 3. Enabling Full Featured Views in Enterprise Manager

The following example of a complex CREATE VIEW statement
now works in BBj with the addition of full featured views, it
demonstrates the power and flexibility of this new capability.

 CREATE VIEW my_great_view AS
 SELECT t.name,
 count(t.order_num) AS NUM_ORDERS
 FROM (SELECT trim(c.last_name) + ', '
 + c.first_name AS NAME,
 o.order_num
 FROM customer c
 LEFT JOIN order_header o
 ON c.cust_num = o.cust_num) t
 GROUP BY t.name
 ORDER BY t.name desc

Summary
All currently maintained database management systems
evolve and grow over time to include new features, new
syntax, and improvements to existing functionality. Because
BASIS is always listening to customers for ideas about
improving our products, count on more improvements and
new features to the BASIS toolset. The addition of ENUM,
REPLACE, DATEDIFF and full featured views gives BBj
developers several more tools to use when developing
database applications. Please keep the ideas coming!

http://links.basis.com/12toc

