
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

uilt-in stored procedures now provide SQL access to BASIS data files or CSV files with the familiar SQL ‘CALL’
syntax and forgo the typical prerequisite of a BASIS data dictionary or the need to write SQL syntax. Any SQL-
enabled application can now access BASIS data files using this new functionality. Built-in SPROCs are an integral
part of the BASIS RDBMS; the built-in BBJSYS database provides access to the new built-in SPROCs. The SQL

‘CALL’ syntax accesses built-in SPROCs through the BBJSYS or any other database.

Introducing the new SPROCs
These new built-in SPROCs, available in BBj® 12 and above, are always available and called from a connection to any
available BBj database. If there is no database defined within BBj Services, use the system database to execute the stored
procedure. The ‘BBJSYS’ database (built-in system database supplied with BBj Services) will execute the stored procedure
without any need for a data dictionary.

BBj or third party applications can use the BBj ODBC Driver® or JDBC Driver to access the built-in SPROCs via the BBJSYS
database. Here is a sample JDBC connection URL to the BBJSYS database:

jdbc:basis:localhost?DATABASE=BBJSYS&SSL=false&USER=admin&PASSWORD=admin123

Understanding how new SPROCs Work
Built-in stored procedures make use of a user-supplied file location and record template as parameters to the SQL CALL
statement to return a result set based on the data from the file. The SQL syntax for use with the built-in stored procedure
looks like this:

GET_RESULT_SET (file_path, template)

“File_path” is the path to the data file you wish to reference and “template” is the string template that describes the structure
of the file.

Using the new SPROCs
The following simple example retrieves information from the ChileCompany’s CUSTOMER file (an MKEYED file) located in
the <BBjHome>\demos\chiledd\data directory:

CALL GET_RESULT_SET
('C:/Program Files/basis/demos/chiledd/data/customer','CUST_NUM:C(6),FIRST_NAME:C(20),LAST NAME:C(30),
COMPANY:C(30),BILL_ADDR1:C(30),BILL_ADDR2:C(30),CITY:C(20),STATE:C(2),COUNTRY:C(20),POST_CODE:C(12)')

 B

Built-in
SQL Access to

BASIS Keyed and CSV Files

By Robert Del Prete
Quality Assurance
Engineer

DBMS

54

Built-in
SQL Access to

BASIS Keyed and CSV Files

http://links.basis.com/12toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Executing this SQL statement in Enterprise Manager returns the data from the CUSTOMER file as an SQL result
set, as shown in Figure 1.

Figure 1. The built-in SPROC via SQL in Enterprise Manager

The call in Figure 1 to the GET_RESULT_SET SPROC returns the first ten fields, as defined by the provided
string template, from all records within the CUSTOMER file. This is extremely helpful when a data dictionary is not
available for the data file. Utilizing iReport together with the built-in GET_RESULT_SET SPROC allows developers
to provide stunning reports without the overhead of creating a data dictionary or writing SQL syntax for their
customers’ traditional file system-based data.

Understanding Advanced Data Manipulation
BASIS’ SPROCs are very versatile and developers can utilize the SQL language to treat a SPROC’s result set as a
table to join, group, filter, and order the returned data. SQL clauses such as WHERE, ORDER BY and JOIN allow
programmers to maximize their control over the returned data to suit the needs of the application and end users.

The example in Figure 2 uses the GET_RESULT_SET stored procedure to pull data from two different files. The
statement joins the results of two CALLs to GET_RESULT_SET SPROC, utilizing the WHERE clause to match the
account numbers in the two tables. It then uses a GROUP BY to group the returned data by ACCOUNT_NUM and
DESC, finally ordering the result set by account number.

SELECT
 GLMAST.ACCOUNT_NUM, GLMAST.DESC,COUNT(GLMAST.ACCOUNT_NUM) AS "ENTRIES",
 STR(SUM(GLJOURN_DET.AMOUNT),'$#,###,###.00') AS "Balance"
FROM
 (CALL GET_RESULT_SET
 ('c:/Program Files/basis/demos/chiledd/data/GLMAST',
 'ACCOUNT_NUM:C(6),DESC:C(35):')) as GLMAST,
 (CALL GET_RESULT_SET
 ('c:/Program Files/basis/demos/chiledd/data/GLJOURN_DET',
 'JOURNAL_NUM:C(6),LINE_NUM:C(4),ACCOUNT_NUM:C(6),MEMO:C(30),AMOUNT:N(10)'
)
) AS GLJOURN_DET
WHERE
 GLMAST.ACCOUNT_NUM = GLJOURN_DET.ACCOUNT_NUM
GROUP BY
 GLMAST.ACCOUNT_NUM, GLMAST.DESC
ORDER BY
 GLMAST.ACCOUNT_NUM

DBMS

55

Figure 2. Advanced SQL query utilizing the built-in SPROC to pull data from two files

http://links.basis.com/12toc
http://community.jaspersoft.com/project/ireport-designer

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

DBMS

56

This SQL statement returns the account numbers in ascending order along with the description for each account, the number of
entries, and the current balance on the account without the use of a data dictionary, as shown in Figure 3.

Figure 3. SQL using the built-in SPROC in Enterprise Manager

Retrieving Data From a CSV File
A second type of built-in SPROC is also available for returning data from a standard CSV (comma-separated values) file
using this syntax:

GET_RESULT_SET_CSV (file_path, template, delimiter)

As with the previous built-in SPROC, the file_path parameter denotes a fully qualified path to the CSV file. The template used for
a CSV file simply describes the fields for each row and the delimiter determines the separator between each row of data in the
text file. The SPROC expects the actual bytes of the delimiter rather than a string representation of the characters. In the case of
a linefeed, a CHAR(10) would be specified in the SQL statement instead of the common ‘\n’ string representation of the newline
character. The same sorting and filtering capabilities are available to this SPROC as well. Consider the following CSV file format:

	 Baroque,George,Fredric,Handel,1685,1759
	 Classical,Joseph,,Haydn,1732,1809
	 Romantic,Carl,Maria,von Weber,1786,1826

Creating the SQL statement to access data in the CSV text file via the SPROC is easy. Insert the file path and create the string
template by following the format of the CSV file. Include the delimiter for the records, in this case a line feed represented by
CHAR(10). Filter the composers using MUSIC_TYPE and exclude any born after 1800. Lastly, group the results according to
the composer’s last name. The SQL statement code in Figure 4 uses the built-in SPROC for a CSV file, selects all of the fields,
sorts by music type and birth date, and then orders by the last name.

 SELECT
 MUSIC_TYPE,FIRST_NAME,MIDDLE_NAME,
 LAST_NAME,BIRTH_DATE,DEATH_DATE
FROM
 (CALL GET_RESULT_SET_CSV
 ('c:\users\data\desktop\composers.csv',
 'MUSIC_TYPE:C(10*),FIRST_NAME:C(10*),MIDDLE_NAME:C(10*),'+
 'LAST_NAME:C(10*),BIRTH_DATE:I(4),DEATH_DATE:I(4)',
 CHAR(10)
)
) AS COMPOSERS
WHERE
 MUSIC_TYPE='Classical' AND BIRTH_DATE < '1800'
GROUP BY
 LAST_NAME

Figure 4. Sample of SQL using the built-in SPROC for a CSV file

http://links.basis.com/12toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Figure 5. SQL using the built-in GET_RESULT_SET_CSV SPROC

Summary
The new built-in SPROCs allow access to any BASIS or CSV formatted data files regardless of the presence of a data
dictionary. Developers can leverage this new feature in many ways, supplying new access to data by end users. Being able to
filter and sort the data using SQL syntax also provides additional flexibility for the distribution and presentation of that data.

The result of the code sample appears in Figure 5.

DBMS

57

• Read more about built-in SPROCs in the online documentation at links.basis.com/bisprocs

• Check out these articles
 • Using Stored Procedures to Add Business Logic to the Database at links.basis.com/06sprocs
 • Unleashing the Power of SPROCs Without SQL at links.basis.com/07sprocs
 • Recipes for Successful Report Writing at links.basis.com/09reportwriting

http://links.basis.com/12toc
http://links.basis.com/bisprocs
http://links.basis.com/06sprocs
http://links.basis.com/07sprocs
http://links.basis.com/09reportwriting

