
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Figure 1. Scheduling panel

Figure 2 shows the configuration of the task group which executes weekly, every
Monday and Friday at 1:44 pm. Note that specifying an “End” date would cause the
Task Group to cease executing at that particular point in time and a change to the
“Repeat Every” field allows for skipping weeks.

Four types of Tasks are available with the scheduler: Run BBj Program, Execute
System Call, Pause Replication, and Resume Replication. Each Task type has a
different set of configuration settings as shown in Figure 3.

execute, and how often the Task Group should repeat execution. A Task is a single
item to be managed and executed by a Task Group. The best way to understand the
scheduler is to simply walk through an example.

Scheduling Example
The example in this article illustrates what might occur when making a weekly backup
of data files located on a replication target for zero downtime on the live system.
Outside the BBj scheduler, this particular job would require additional Java or BBj
coding to handle pausing and resuming the replication job but since the scheduler
is designed with BBj in mind, it requires only a couple of mouse clicks to perform
these tasks.

The Scheduling panel in the Enterprise Manager displays a list of all currently
configured Task Groups and provides an interface for creating, modifying, and
removing them. The panel shows the tasks within each group, when they will run next,
and when last run. Access the Scheduling panel by selecting the “Scheduling” item
from the Enterprise Manager navigation area.

Figure 1 shows four Tasks that make up this Task Group. The first task pauses the
replication job, which is not as easily done from something like a cron job. This ensures
that the replication target is in a clean state and ready for backup. The second task
executes a BBj program that could do anything needed to prepare the data for backup.
Next, the scheduler executes a system call; in this case executes a Windows .bat batch
file to perform the backup operation. Finally, the last task automatically resumes the
replication job so that the target can catch back up with the source.

here are numerous reasons why
an administrator or developer
might want to schedule particular
tasks to run automatically at a

particular point in time or at a regular
interval such as a nightly backup job,
maintenance utility, or some kind of batch
processing job. One common method
for scheduling tasks is the UNIX or
Linux cron job. However, certain types
of tasks (especially those which require
interaction with BBj® Services) would be
more easily managed if BBj had a built-
in scheduling feature and it would also
remove operating system dependencies
from an administrators deployment
plan. Therefore, BBj 12 introduced a
new scheduling feature to the already
robust set of tools available in the BBj
Enterprise Manager as well as the
Admin API.

Two components make up the scheduling
system: Task Groups and Tasks. A Task
Group contains a list of one or more
tasks to be executed synchronously in
sequential order, when it should first

66

 T

System Administration

Platform-Independent Task Scheduler

By Jeff Ash
Software
Engineer

By Nick Decker
Engineering
Supervisor

http://links.basis.com/12toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Because we are obsessed with speed and
making BUI as fast as possible, adding
several seconds to the launch time was
unacceptable, especially because new
development builds typically occur just once
per day. Since the files in the bucket did not
change very frequently, constantly querying
the bucket every time a user hits the download
page would be overkill. If we could somehow
query the bucket on a regular basis and save
out the results to a local file on the server,
then we would shave several seconds off the
launch time.

BBj’s new scheduling feature fit the bill
perfectly! In just a couple of minutes, we set
up a job to run a BBj program that retrieved
the current list of available cloud builds and
saved the information out to a file on the
server. We configured the job to run every 15
minutes so the download page would never be
out of date by more than a quarter hour. The
job itself only takes a few seconds to run so
the load on the server is negligible. We then
modified the BUI download program to retrieve
the list of available builds from the local file on
the server, which occurs almost instantly.

The benefits don’t stop there. Because we
have replicated servers located around the
world, the BUI app is served to customers
from the server nearest to them. A user
in Germany, for example, will be running
the download page app from our server in
Ireland, while we in Albuquerque get it from a
server in California. All of this is transparent
to the end user by way of geo-aware
servers. Additionally, the replicated servers
automatically get the latest set of available
builds as the scheduler saves that information
to a local file that is automatically pushed to
all of the servers via BBj’s replication ability.
Lastly, Amazon’s CloudFront content delivery
network sends the desired BBj build to the
user from the server closest to them, further
streamlining the download process.

Summary
With the addition of a powerful platform-
independent scheduler in the BBj product,
administrators and developers have more
power and flexibility at their fingertips. It is no
longer necessary to use one or more third
party schedulers to manage BBj backups or
other business processes requiring execution
at regular intervals. And finally, since the
scheduler is built right into the BBj system, it
makes certain interactions with BBj-related
processes such as replication, much easier to
configure and manage.

67

System Administration

Figure 3. Task Editor showing Run BBj Program (left), Execute System Call (top right), and
Pause A Replication Job (bottom right)

For further information regarding the refactor and optimization of the BUI-based BASIS Product Suite
Download page, see The Anatomy of a Web App Makeover at links.basis.com/12webapp

Another Use Case
When we first designed the new BUI-based BASIS Product Suite Download page
(links.basis.com/getbbj), one of our goals was to integrate it seamlessly with
the automatic build system in the cloud. The BUI program accomplishes this by
utilizing a custom BBj class that dynamically retrieves the available released and
development builds from an Amazon S3 bucket (S3 is the nickname for Amazon’s
Simple Storage Service, which we think of as a large hard drive in the cloud). The
end result is that the download page lists all available BBj downloads automatically,
without any human intervention. The code worked perfectly, but subsequent
performance analysis revealed that querying the cloud machine at runtime was
occasionally slow. Amazon guarantees uptime for their servers and while access
is typically very fast, various tests showed that querying the S3 bucket added
anywhere from 0.5 to 5 seconds to the launch time of the BUI app.

Figure 2. Task Group Editor

http://www.basis.com/bbj-download
http://links.basis.com/12webapp
http://links.basis.com/12toc

