
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Stateless services require all the information about a request up front. Providing
partial information will not return a valid reply so each request sends whatever the
server might need in order to get a valid reply. The bank itself is stateful. They, of
course, need to remember all of their customers and balances. Each request to the
bank is a self-contained package, requiring no extra state. Statelessness simplifies
the client and server code greatly. In fact, it’s so simple we can use HTTP instead of
writing our own SOAP-like system.

How, exactly, is information sent to the web server? A web browser uses HTTP to
talk to a web server. Every click of a link on a web page sends an HTTP request to
the server and returns an HTTP response back to the client. The protocol is a little bit
too complicated to just type into a telnet session, but it is not nearly as hard as the
alphabet soup of WSDL services. There are four key HTTP methods used in REST-
based WS: GET, PUT, DELETE, and POST.

Jason: “Excuse me, ma’am, what is my balance?”
Teller: “I’m sorry, sir, for what account?”
Jason: “Of course. What is the balance of account 1234?”
Teller: “I’m sorry, who is the account holder for account 1234?”
Jason: “What is the balance of account 1234 held by Jason?”
Teller: “I’m sorry, what is the password for account 1234 held by Jason?”
Jason: “What is the balance of account 1234 held by Jason with password GetItAlready”	
Teller: “The balance is 37 cents.”

protocol, Hypertext Transfer Protocol (HTTP), simplifies WS even more. Statelessness
and HTTP let us take advantage of many existing tools. The whole spectrum of
Internet infrastructure helps us implement REST-based WS. From Java libraries that
provide valid HTTP sessions to caching web proxies, all of the infrastructure on the
Web works for us.

What exactly is a stateless protocol? Imagine a stateless bank teller. A conversation
might go something like this:

Development Tools

 I

46

By Jason Foutz
Software Programmer

n today’s world, we see Web
Services (WS) in action
everywhere from online shopping
and shipping trackers to mapping

and geolocation tools. The methods
used to create WS are just as broad
and varied as the tools that use WS.
However, some of the protocols defined
by the WS- documents seem to exist
only for Oracle to sell consulting
contracts. One can easily drown in the
alphabet soup of UDDI, WSDL, and
SOAP. Learning SOAP (Simple Object
Access Protocol) reveals there is nothing
simple about it. Add to that the fact that
Java and .net are incompatible in subtle
ways, which creates extra complexity.
REpresentational State Transfer (REST)
eliminates much of the formality imposed
by a WSDL-style WS.

How does REST avoid complexity? First,
REST is stateless. Statelessness alone
won’t make WS simple. But, leveraging
the Internet’s most popular stateless

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://links.basis.com/12toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

This type of transaction cannot be changed or removed so there is no need to
implement PUT or DELETE.

A REST-based WS can be consumed with the http-commons library. Code for
processing a request might look like this:

REST services requires only HTTP from their clients. This makes it exceptionally
easy to consume services from many different languages. BBj and Java, as we
saw, may use the http-commons library. C# ships with an HttpClient class right in
the .net runtime. While PHP has nothing built in, many third party http client libraries
are available. HTTP is so widely used, command line libraries such as curl or wget
could be used from any language’s version of SCALL. C programmers might do an
exec of curl to retrieve their WS results. Libraries for interacting as an HTTP client
are widespread, virtually every platform and language can call a WS.

Summary
While WS provide unlimited complications, REST WS limit that complexity in two
key ways. REST is stateless, requiring clients to provide all the information a server
might need for every request. REST leverages HTTP, simplifying the stateless
communication to the server. REST is a powerful tool for deploying WS without the
risk of drowning in alphabet soup. So rest easy, Keep It Simple and Stateless, and
‘KISS’ WSDL goodbye!

BBj Servlet Overview in the BASIS online docs at links.basis.com/servlet covers
creating and handling HTTP requests using BBj Services. In the following examples,
getMethod is the workhorse for determining what kind of request the user makes. A
lot more functionality is available in BBjHttpRequest and BBjHttpResponse in the online
help at links.basis.com/basishelp.

When the server receives an HTTP request, the getMethod() determines which HTTP
method the client used. You can implement each method GET, PUT, DELETE or POST
to handle the client’s requests. Since not every WS requires every method, just omit
unnecessary methods. Clients must provide all the information possibly needed up
front because HTTP is stateless.

Code for transaction processing might look something like this:

Every query asked of our fictional
bank teller was a GET request.
Requesting balance information GETs
information about the bank account, a
specific resource. In SQL, a SELECT
statement is like the GET request.
GET requests are made visible on
many websites. At www.google.com,
searching for something adds on
many parameters about the request. It
might look something like www.google.
com/search?query=something. The
parameters vary depending on the exact
query, but the arguments display inside
the address bar of the browser.

A PUT request replaces existing state
on the server. Our fictional bank teller
would be able to change a password
with a valid PUT request. A PUT request
is similar to the SQL UPDATE statement.
Furthermore, PUT requests should
be idempotent. Whether using PUT to
change the password to “hello” once
or 100 times, the password should be
“hello” after every request. Intentionally,
or accidentally, sending the request
multiple times shall have no effect.

A DELETE request does just what it
sounds like it does. DELETE removes
state from the server. HTTP DELETE
works like an SQL DELETE statement.
Because it changes state, DELETE
should also be idempotent. For example,
deleting a specific account multiple times
has no effect, no additional accounts are
deleted.

The final HTTP method, POST, creates
resources. POST is similar to the
SQL INSERT statement. Every POST,
creates a new resource, so it can not be
idempotent. Depositing a dollar into an
account POSTs that dollar to the teller.
Every single dollar deposited has an
effect, to create a resource on the server.

So how would we actually implement a
REST Web Service? The BBj® Servlet
API provides full access to HTTP. This
introduction just scratches the surface
of what is possible with BBjServlet. The

47

• Review getMethod in the online BASIS documentation at links.basis.com/getmethod
• See also
 • Detailed examples of using the Java library at bit.ly/euhVG
 • Sample API of accessing another’s Web services at bit.ly/JIywat
 • Vast list of REST Web Services at bit.ly/9XXsrF

Development Tools

https://www.google.com/
https://www.google.com/search?query=something
http://links.basis.com/servlet
http://links.basis.com/basishelp
http://links.basis.com/getmethod
http://links.basis.com/getmethod
http://bit.ly/9XXsrF
http://bit.ly/JIywat
http://bit.ly/euhVG
http://links.basis.com/12toc

