
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

BBj® 12 includes significant optimizations to the string handling code and to
various verbs and functions. Java 7 also includes some enhancements to
the operation of the Just-In-Time (JIT) Compiler. Often, a given optimization
will only apply to a specific portion of the code, or a particular programming

idiom, but the optimizations included in the release of BBj 12 and Java 7 are unique
in that they apply to virtually every program that runs on the BBj platform and on the
Java platform.

Consider that in BBx®, string values and string variables are used on nearly every line
of code. If we improve string performance even just a small amount, it will improve
the performance of a large number of lines of code in a BBx program. Similarly, if we
improve the performance of a large number of functions in the language, every line of
code that uses a function has the potential to see some improvement. Optimizations
to these core language features enhance the performance of every program written
in BBx.

The release of Java 7 brings similar improvements. The Java Virtual Machine (JVM),
on which the BBj platform runs, has a runtime component called a JIT Compiler.
The purpose of the JIT compiler is to transform code from a platform-independent
interpreted format into instructions specifically tailored to the underlying hardware.
Improvements to the JIT compiler affect all Java-based programs, including BBj. This
article will explain some of the optimizations and show some of the results of the
efforts BASIS took to make your code run faster.

Java 7 Improvements
Research into the operation of typical Java programs has shown that the vast majority
of time executing code is spent in a small fraction of the entire codebase, and BBj is
no exception. The code that the Java Virtual Machine exercises is partly dependent
on BBx code interpreted by the BBj interpreter, but BBj performs common operations
on every line of BBx code. As the JIT compiler compiles those operations into native
code for the host platform, those operations BBj executes most frequently benefit from
highly optimized code specifically targeted for the host OS and hardware.

Since BBj Services usually runs for a long period of time, often running many
thousands of interpreter instances, the JIT compiler has time to continue to optimize
even those portions of code that are not executed as frequently. Over time, the JVM
adapts to the characteristics of your programs and tailors its optimized, generated
native code to run your program as fast as possible, identifying the most likely code
paths taken by the BBj codebase when running your code and ensuring those paths
run as quickly as possible.

In the late versions of Oracle's release of Java 6 and with improved performance in
Java 7, the JIT compiler added an important optimization called "escape analysis."

Escape analysis allows the JVM to
eliminate unnecessary synchronization
and allocation. If the JVM can determine
a hard upper bound on the lifetime
of a particular object, it has the
opportunity to avoid allocating the
object at all. With fewer constraints, it
can also guarantee the object is never
shared between two distinct threads
of execution. That guarantee allows
the JVM to eliminate any locking done
on an object. All programs benefit
from avoiding unnecessary work, BBj
included, and since BBj often allocates
objects that are never shared between
two threads, eliminating unnecessary
locking can produce visible gains in
your BBx application.

BBj 12 Improvements
Of course, these improvements
only indirectly affect BBx code by
improving the performance of the
BASIS codebase. At the same time
as the engineers at Oracle have
been improving the performance of
Java code, BASIS engineers have
been busy at work directly improving
the performance of BBx code. Here
is some insight into what goes on
behind the scenes as we improve
our codebase, and ultimately, the
performance of your application code.

Soliciting Samples
In the summer of 2011, we sent a
request to the developer community
for samples of code that showed
opportunities for performance
improvements. In addition, we
identified a few specific areas through
our customer support transactions
that we wanted to address with these
changes in the string handling code.
We handcrafted several tests that
executed very specific individual
operations ranging from common
functions and verbs to various
operators. We also wrote a program
generator that could automatically
generate programs that select from a
wide variety of normal string-related

 B

22

Language/Interpreter

Going Fast, Faster, Fastest

By Adam Hawthorne
Software Engineer

http://links.basis.com/12toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc 23

Language/Interpreter

operations, including familiar ones like
substring and concatenation. All these
samples allowed us to have baselines
from a wide array of sources so we
could compare with previous versions of
BBj to ensure we did not introduce any
significant performance regressions with
our improvements. However, in order to
perform a proper comparison between
the old code and the new code, we
needed a test harness that could paint
an accurate picture of the performance of
these samples.

Performance Testing Framework
When getting a sense for how fast
something is, it is often tempting to
write a quick benchmark, run it a few
times, and calculate a simple average
using the arithmetic mean. Repeating
this a number of times, the inaccuracy
and noise evident in that kind of data
becomes readily apparent (especially
when trying to reproduce results to
show-off the performance improvements
to the management team!). BASIS'
continued reliance on the cloud for its
vast computational resources makes it
easy to run several tests, but attempting
to produce reproducible results in an
environment subject to such a high
degree of external influence proved a
challenging task in and of itself.

An Insider Look at BASIS Testing at
links.basis.com/12testing discusses
a client/server based testing tool
developed specifically for running BBj
programs simply known as "the testbed."
After making a few improvements to this
internal tool, we adapted our sample
programs to run in that environment
and to execute several hundred times
each, for each run of the performance
test suite. We use a statistical method
called bootstrapping to identify a range
of median values and produce a reliable
confidence interval for the median
running time of each test, which allows
us to determine to a reasonable degree
of certainty both that our timing values
are consistent and whether our results
show a statistically significant increase
(or decrease) in performance.

Finally, certain external effects such
as the JIT compiler and the garbage
collector tend to skew later numbers
in the tests, so we modified the
performance test suite to perform a dry
run through all the tests to allow those
effects to settle before finally recording
the results of our tests.

Making it Faster
Having a way to measure the performance is certainly an important part of our
optimization efforts, but actually improving the performance of the code requires its
own effort. Part of that is finding where we can improve the code.

Let’s look at an example that illustrates one of the motivating issues we found.
To avoid the overhead of copying bytes with every assignment, BBj string values
will share a buffer with other strings when possible. This sharing occurs in several
ways, but by instrumenting our internal buffer handling code, while running some
of our test cases, we discovered some opportunities to enhance our buffer sharing
implementation. In the following figures, each group of cells represents a buffer
of bytes that multiple BBj string values refer to. The shaded portion of each cell
represents the portion of the buffer used by the corresponding shaded expression
in the associated program text.

Originally, a typical program might have code that looks like this:

	 1: a$ = "xxxxxxxx"
	 2: b$ = a$
	 3: c$ = b$(6,3) + "xx"

After line 3, the buffer's contents appear as in Figure 1.

Figure 1. Buffer contents after line 3

	 4: b$ = c$

After line 4, our buffer sharing code would ensure that a$, b$ and c$ were using the
same buffer at the end of the code which avoids having to copy the buffer (Figure 2).

Figure 2. Buffer contents after line 4 (before optimizations)

The optimization opportunity presents itself when there is not enough room in the
buffer in line 3 above to append the value "xx". In this case, in order to continue to
be able to share the buffer, the original buffer handling code would copy the entire
contents of the buffer above to a new larger buffer, copy in the contents of the
appended string, and modify a$, b$, and c$ to refer to the new byte buffer. Since
some copying must take place to allocate the new buffer, it is not necessary for the
new buffer to continue to share the contents with the old buffer. After making this
change, the buffers look like Figure 3.

Figure 3. Buffer contents after line 4 (after optimizations)

http://links.basis.com/12testing
http://links.basis.com/12toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Another benefit arose because of
this change. When there are no
longer any references to a$, we no
longer need to maintain the memory
allocated for that buffer and we can
eliminate it. This initially requires a
little more memory to maintain two
buffers, but eventually, it pays off
because of the ability to reclaim older
buffers.

In a certain code pattern, this
optimization was extremely effective
because we performed this kind of
operation in a loop. In this case, the
beginning of the buffer (the portion
referred to by a$) would continue
to grow. The buffer management
code cannot track the extent of each
use of a buffer without suffering an
extreme performance penalty, and so
the act of copying the buffer in order
to append would copy hundreds or
even thousands of bytes that were no
longer in use.

Papercut Optimizations
We also discovered other optimization
opportunities. Many of these
optimizations are only noticeable
on a very small scale, but we found
and implemented over a thousand
of these optimizations throughout
the codebase. We termed them
"papercut" optimizations because
individually they are not very serious,
but when considered all together,
they can produce a significant
improvement in a program's execution
time. We were able to eliminate
unnecessary temporary buffers in
several hundred locations throughout
the BBj codebase. We tightened up
certain BBx function implementations
to eliminate unnecessary allocation
and we improved the algorithms
behind some of the common BBx
functions and verbs.

Results
The following charts are some results
from our performance testing. Each bar
in the graph is a specific performance
benchmark as described previously.

Figure 4 shows the differences between
BBj 12 on Java 7 and BBj 12 on Java
6. For the vast majority of our tests, the
JIT compiler improvements in Java 7
significantly enhance performance even
after our optimizations. There are a few
performance regressions in Java 7, but
it is important to note that these are
micro-benchmarks, and each individual
test is unlikely to show a significant
difference in a full application. These
charts together show that the overall
improvements are very likely to outweigh
any individual regressions.

24

Language/Interpreter

Figure 4. Performance comparisons in Java 7 vs Java 6

http://links.basis.com/12toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Figure 5 showcases the effects of our
optimization efforts. It is important to
note these are micro-benchmarks that
exercise a specific area in our code
and also verify that our optimizations
are actually improving performance for
those instances. For example, one can
see the extreme case outlined in the
above section when looking at the first
bar of the first chart below, showing
a dramatic 99.45% improvement in
execution time (i.e., almost all the
execution time disappeared). However,
the combined picture of these charts
again reveal an overall improvement
in BBj performance, which will, in
turn, improve the performance of your
application code. Efforts to address the
few minor regressions in these graphs
are already under way.

Summary
BASIS engineers commit themselves to
improving the performance of BBx code.
Often, this goes on as we do our day-
to-day work, but from time to time, we
take opportunities to make performance
the sole focus of our efforts and the
results are telling. As we continue
to look for ways to optimize the BBj
platform, we expect the performance of
BBx programs will continue to improve
so you can concentrate on just writing
application code.

25

Language/Interpreter

Figure 5. Performance comparisons in BBj 12 vs BBj 11

Find out more about the JIT compiler optimizations, both in general and specifically in Java 7
 The Java HotSpot Performance Engine Architecture White Paper at bit.ly/i1YnXn
 Java HotSpot Virtual Machine Performance Enhancements at bit.ly/L9GjBz

•
•

www.basis.com/advantage

Missed an Issue?

http://www.oracle.com/technetwork/java/whitepaper-135217.html
http://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-7.html
http://www.basis.com/advantage-index
http://links.basis.com/12toc

