
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

By Mike Phelps
Software Engineer

SLOW - Getting all the source files from our source code
repository, compiling them and assembling them into the
final downloadable and installable package took many hours
every day. During a normal day, we could get only two builds
at most.

SERIAL - Only one build could run at a time. Quite often
we needed to publish daily builds of more than one BBj®
version at a time, such as a development build (representing
the latest work found in the “mainline” version of our
source code repository) and a release build (representing a
numbered release version of BBj). The build system could
not perform simultaneous builds, guaranteeing delays during
our most hectic periods.

MANUAL - The build system was not completely automated.
A human being always had to press the button to start
a build, and if the build failed, a human being (the Build
Master) had to comb through the log files to determine the
cause. If, late in the afternoon, an engineer checked in a
source file containing a syntax error, we wouldn’t find out
until the morning of the next day that it caused the nightly
build to fail. The Build Master had to do some manual
detective work to find out what file caused the build to fail
and who checked that file into the source code repository so
that person could be tasked with fixing the problem.

FALLIBLE - There was always the worrying potential for
catastrophic failure. If our Build Master ever happened to get
hit by a bus, it would have taken a long time for someone
else to learn how to operate and maintain the system.
Likewise, had our dedicated build server ever failed, we
would have spent several painful days trying to get another
machine properly configured to take its place. We had no
immediately available backup server or personnel.

BASIS engineers are responsible for completing a
status report template each week. It usually isn’t
difficult for me to fill in the first four sections and
describe what I’ve worked on or elaborate on problems

I’ve encountered or summarize meetings I attended; that’s
all pretty standard stuff for a status report. But those last two
items - Interesting Article Review and Innovative Ideas - confront
me every week. They are a standing challenge, like a gauntlet
tossed at my feet. They are a rebuke for my complacency and
resistance to change, a nagging reminder that I need to spend
time thinking about new technology and new ideas.

You see, BASIS is constantly on the lookout for better ways of
doing things. More than any other company I’ve ever worked
for, BASIS strives to keep abreast of the latest technology and
continually improve the software development process. Some
of these technical innovations are plainly visible in our products
(BUI, anyone?), while others are implemented “behind the
scenes” and make us a stronger, more successful company.
This article tells the story of one such improvement, something
that indirectly benefits everyone who uses BASIS technology.

It Wasn’t Broke, but We Had to Fix It
The Business BASIC language, as you might imagine, is a
large and complex piece of software. It has thousands of
source code files and associated libraries. A few years ago it
took an equally complicated system to build it. We appointed
a machine as our dedicated build server, a pile of arcane build
scripts written in various languages, and a designated “Build
Master” engineer who spent all of his time keeping everything
running. This arrangement got the job done and worked well
for decades. It was clear to everyone, however, that it had
several inherent disadvantages.

Continuous Innovation at BASIS
Building and Testing in the Cloud

68

 B
•

•

•

•

Obviously our software build methodology was ripe for
a little innovation. Nothing was broken, but we wanted
(needed) to fix it anyway, so under “Innovative Ideas” I
described how ‘continuous integration’ (CI) could make
our build process better.

http://martinfowler.com/articles/continuousIntegration.html
http://links.basis.com/12toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc 69

CruiseControl, the “grandfather” of CI build servers. We set
it up on a spare Linux server and turned it on to building BBj
whenever anyone committed a change. These builds were not
complete in that they did not produce the installable product
delivered to customers; they were meant only to give quick
build success/failure feedback to the engineers. The result was
fewer failed builds on the main build system.

We later converted to a new CI build server called Hudson
in order to take advantage of its beautiful web-based control
system. Instead of arranging for each automated build with
hard-to-decipher XML files, we configured the complete
system and every build project by filling out GUI forms on a
web page. After that, enthusiasm for the CI conversion really
began to take off. More engineers got involved in running and
maintaining the build system since it was easy to comprehend
and fun to operate.

This proved so successful that we gradually added more
tasks to the CI build system, like documentation builds. While
fleshing-out and expanding the CI build system, we continued
to rely on our original build system to produce the final product.
Testing involved comparing the CI results with the builds from
the legacy system. When the results were the same, we knew
we had succeeded.

Ascending to the Cloud
BASIS moved to the cloud in 2010. Cloud computing refers
to the increasingly common practice of purchasing computing
power from a commercial services provider instead of
maintaining an in-house collection of servers. (The word
“cloud” in this term means the offsite collection of computer
resources and data storage typically shown in diagrams as a
cloud symbol.) We contracted with Amazon Web Services and
began re-hosting our operations from on-premise servers to
Amazon Elastic Compute Cloud (EC2) instances. We moved
our Subversion source code repository to a persistent cloud
server that summer and then transitioned the build system later
in the fall.

Hudson worked extremely well in the cloud, thanks to a special
Amazon EC2 plugin developed by Kohsuke Kawaguchi (the
original creator of Hudson at Sun Microsystems). Although
our ground-based Hudson installation could handle multiple
simultaneous builds, the small number of machines in our
onsite server lab that we could use as slaves still limited us.
During busy times the Hudson server would get progressively
slower, while requested builds would pile up in a queue waiting
for a slave machine to become free. The Hudson CI server in
the cloud, on the other hand, was able to start as many slave
instances as required to handle the load. We could do an
unlimited number of different simultaneous builds, and then
scale back by shutting down the slave instances when their
work was finished and the crunch was over.

In early 2012, when the original author of Hudson and most of
the project’s developers had a disagreement with Oracle (the
corporate sponsor who took over from Sun Microsystems) and
decided to fork the code base, we followed them to their new
rebranded CI server, called Jenkins. The change was painless.

The use of a CI server and the move to the cloud caused
a revolution in our testing and deployment process as well.
Jenkins allows “chaining” build projects together in various
combinations. This means that we could break up long,

Learning to Continuously Integrate
The term continuous integration refers to a software
development practice where teams of programmers
frequently synchronize with and commit their changes
to a code base repository, then rebuild the code base
after every change is committed. This takes the pain out
of getting code from many different people to compile
successfully, and helps catch bugs by providing much
quicker feedback about build results. Continuous
integration is closely associated with other development
techniques such as ‘continuous testing’ and ‘continuous
deployment,’ where the code is constantly tested and
constantly delivered to the end users.

These techniques all imply a high degree of automation,
efficiency, and speed; things our build system conspicuously
lacked. It all sounded wonderful, but we realized that adopting
this technology was going to be a tall order. It was not
possible to convert a long-standing, deeply-entrenched-in-
the-corporate-culture build system overnight. There were
several prerequisite steps that must be taken.

First of all, the code base must be stored in a version control
system (VCS) such as CVS, Subversion, Git, Mercurial, or
one of many others. CI servers, the software application that
takes charge of doing software builds, need a convenient
single location from which to get the code to build, and need
to work with today’s popular version control systems. BASIS
has always used a VCS and currently uses Subversion to
maintain the Business BASIC code base.

Next, the software build must be automated, meaning that
the code base should compile with some type of script
executed by a command from a shell prompt. In its simplest
form, a CI server is a constantly running program that listens
to signals from a VCS repository. When the VCS announces
that a file has been added or deleted or modified, the CI
server checks its list of build projects and starts a software
build by invoking the command associated with that project.
The CI server does not build the software itself; it runs a
command that starts the automated script which does the
build. When the build is finished, the CI server intervenes
once more to store the results in an archive and notify any
interested parties about success or failure.

Our existing build system was already partially automated;
we had a collection of scripts that we could start from
a command-line shell. We had developed these scripts
over many years, using whatever scripting technology
the build system architects were most comfortable with at
the time. We decided to start over from scratch using Ant
(Another Neat Tool), a well-known and extremely flexible
build scripting system written in Java. This rewrite effort
brought much needed simplicity and consistency to the
build process, but it was by far the most time-consuming
and difficult part of the conversion to CI. Ant allowed us to
store the build scripts in the same directory packages as
the code they were meant to build, or in other words, each
time it checked the source code out from the repository, the
Ant build scripts came with it automatically. Ant was easy
to learn and understand, and best of all, Ant was able to
compile the BBj code base in less than ten minutes!

With the prerequisites out of the way, we were ready
to begin using a CI server for the first time. We chose

http://en.wikipedia.org/wiki/Another_neat_tool
http://cruisecontrol.sourceforge.net/
http://hudson-ci.org/
http://aws.amazon.com/
http://aws.amazon.com/ec2/
http://jenkins-ci.org/
http://links.basis.com/12toc
http://en.wikipedia.org/wiki/Cloud_computing

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Summary
Our new CI cloud-based build, testing, and delivery system
is fast, easy to operate, almost infinitely scalable, and (we
believe) disaster-proof. The payoff has been remarkable. Is it
perfect, or for that matter, is it even finished? I think not, it’s a
continuous process. We always have a list of improvements to
make, inefficiencies to iron out, and new features to implement.
With the cloud, there are cost savings available when we tweak
this or cut back on that or take advantage of special offers. In
this business, nothing remains unchanged for long...except
for the weekly BASIS engineering status reports, which still
end with the twin challenges - Interesting Article Review and
Innovative Ideas.

70

•

•

•

•

•

multi-step processes into smaller individual build projects,
then link them together so that any given build step has a
‘parent’ predecessor build project and a ‘child’ successor build
project. The ‘child’ build projects do not run if their ‘parent’
builds fail. We wrote Ant scripts to initiate various kinds of tests
and then linked them in Jenkins to the software build projects
whose results we designed to test. Each time a software build
successfully completes, another build starts which retrieves
the compiled code from the CI server’s archive, assembles
it into an install package, and uploads it to an Amazon S3
(Simple Storage Service) ‘bucket’ in the cloud which anyone
at BASIS can find. After the software build and packaging/
upload projects complete, the CI server instantiates new slave
instances in the cloud and on premises, which correspond to
all the platforms supported by Business BASIC, loads each
slave with the packaged build results, and calls the associated
Ant scripts to initiate testing. The entire process is totally
automated and runs without human intervention. (Well, almost.
A human being triggers the process by checking in a change to
the code base.)

Living in the Future
We are doing things now that were in the realm of science
fiction a few years ago.

The open-source Selenium testing framework integrated
very well with our CI server, allowing us to automate
testing our BBj GUI interface classes and each
individual method belonging to them. This kind of testing
previously demanded hours of tedium from a human
being sitting in front of a screen with a mouse and
keyboard, meaning that it was not done very often.

At BASIS, we run the administrative and operations
side of our company using software written in Business
BASIC (we ‘eat our own dog food’). We have a
development environment in which we test new code
and a production environment where we use stable
code. In the days before automation and the cloud,
getting new code from the development environment

over to the production environment was a somewhat
iffy manual operation. The two environments were not
identical; what seemed to work in development might not
work in production. Now, the issue is resolved with some
help from the cloud. When we want to deploy the latest
software version to the production server, we invoke an
instance of a server that is identically configured to the
production server, run tests to verify everything works,
and then use rsync (the Linux remote file synchronization
utility) to copy all the new or altered files to the production
server. Quick, easy, and as foolproof as it gets.

Running a TechCon conference used to involve very
expensive, time-consuming configuration of in-house
and rented computer equipment. All the issues and
costs involved with physical transportation, installation,
networking, testing, maintenance, and takedown were our
responsibility. The cloud has made that old level of effort
seem incredible, even ridiculous. We can now prepare
Amazon Machine Images representing a fully configured
computer running MS Windows or Linux with all the
necessary software pre-installed, then invoke as many
instances of them as we want, whenever we want, from
the presenter’s personal laptop while the demonstration
is in progress. We can travel light, but still take with us all
the power we need!

For more information on continuous integration, read
 • Continuous Integration - Fowler, Martin. (2006). Martin Fowler. Retrieved 6 November 2012
 from bit.ly/1k01VP
 • The Cornerstone of a Great Shop – Jared Richardson Methods & Tools, Spring 2006
 from bit.ly/eXtyT9

Tools mentioned in this article include
 • Ant 		 ant.apache.org
 • Amazon AWS aws.amazon.com/documentation
 • Hudson	 wiki.eclipse.org/Hudson-ci
 • Jenkins	 jenkins-ci.org
 • rsync	 rsync.net	

 • Selenium	 seleniumhq.org

http://aws.amazon.com/s3/
http://rsync.net/
https://aws.amazon.com/amis
http://martinfowler.com/articles/continuousIntegration.html
http://www.methodsandtools.com/archive/archive.php?id=42
http://ant.apache.org/
http://aws.amazon.com/documentation/
http://wiki.eclipse.org/Hudson-ci
http://jenkins-ci.org/
http://rsync.net/
http://seleniumhq.org/
http://links.basis.com/12toc

