
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

This article covers a few different ways BBj® developers can optimize their
application’s images to achieve quicker display times, make the most of limited
bandwidth, and deliver quality output.

Format
Choosing the best image format for the individual graphics is the foremost potential
optimization that developers often overlook. Various image formats, such as .png,
.jpg, and .gif, employ different compression algorithms that reduce the size of the
final image. These compression algorithms vary from format to format, and some
are more effective for certain image types. On the flip side, some algorithms do a
lousy job on images with certain characteristics, so determining the optimal format
can result in huge savings. Colors are one such characteristic. A photo with millions
of colors, for example, will usually compress the best using the .jpg image format.
On the other hand, a logo with just a few colors will probably compress best using
a .gif or .png format and won’t include unsightly compression artifacts that a .jpg
format could introduce.

File Size
By way of example, you saved a large photograph as a .gif that weighs in at 407 KB,
taking 5 seconds to download on a 1Mbps cable modem Internet connection. In
addition to taking a long time to download, .gif files are palette-based and reduce
the number of colors to a set of 256-fixed colors in a color table, which results in
a dithered image with reduced quality. In contrast, saving the image as a .jpg file
would result in a 104 KB file – almost one quarter of the size of the .gif image! Not
only will this file download much more quickly, but you have the ability to control the
level of compression to make a good compromise between image quality and file
size.

To drive the point home, saving the exact same image as a lossless 24-bit .png
image with alpha channel support (which will not even be used), would result in a
1.1MB file that takes 13 seconds to download! Selecting the optimum format for By Nick Decker

Engineering
Supervisor

Looks Better, Runs Faster
GUI and BUI Image Optimizations

 B

Language/Interpreter

42

BASIS went to great lengths
to optimize the launch time,
execution, and overall perform-
ance of the new BASIS Product

Suite Download page, discussed in The
Anatomy of a Web App Makeover: A
Case Study at links.basis.com/12webapp.
Another area for application optimization
that we explored while reviewing the new
BUI download page was that of image
optimization – one that developers too
often woefully ignore. Image optimization
is really ‘low-hanging fruit’ as it does not
take much time to review the graphics in
an app. Optimizing file sizes can lead to
big speed boosts when the app runs in
a high latency or tiered architecture. And
choosing the best tool for the job can also
ensure that images render in the best
quality possible.

http://links.basis.com/12webapp
http://links.basis.com/12toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

the size and type of image is occasionally a trial and error process, but it has the
potential to yield huge rewards by dramatically reducing disk space and transfer
time.

Crushing
Here at BASIS, we capitalized on our knowledge of ‘crushing’ to further optimize our
BUI Mortgage demo when we changed the vertically-tiled background image from
a .jpg format to an 8-bit indexed .png format. We then used a third party utility like
pngcrush to strip out unnecessary metadata from the image and decreased the size of
the background image by 400% – from 7.6 KB to 1.9 KB. Running several .png toolbar
images used in other BASIS utilities also resulted in significant savings as shown in
Figure 1. The new, smaller images not only take up less storage space on the disk,
but more importantly, the smaller file size results in faster transfers from the server to
the client. Depending on the number of images used in an application, this can have a
measurable impact and reduce the application load time.

Language/Interpreter

43

Figure 1. Compressing the images used by the BASIS utilities saves time and space

Uniting Images for Network Optimization
Applications vary in the number of images they employ, but it is fairly common for
them to use dozens of images for menu items and toolbuttons when the application
is sufficiently complex. Sending these images over the wire to the client may seem
innocuous since they are usually less than 1 KB in size, but often times the number of
HTTP requests required to transfer the images to the client is the crucial aspect and
limiting factor. Reducing the number of HTTP requests is one of the foremost methods
webmasters use to speed up their websites, making pages load faster and minimizing
the effect of latency. Images are prime candidates for this form of optimization, as
combining multiple discrete images into a single image file slashes the number of
HTTP requests from dozens down to one. Webmasters normally rely on image maps
or CSS sprites to combine image files, and BBx® developers can reap the same
rewards by using an ImageList. ImageLists are typically used to set an image in a
TabControl or Grid, but you can use them with any control that offers a
setImage() method.

For example, we modified the Resource Bundle Editor to use an ImageList for the
menu item, toolbutton, and button images. The application previously used 28 distinct
image files, so with a little help from a CSS Sprite tool, we combined them into a single
image comprised of the concatenated images as shown in Figure 2.

Figure 2. The result of combining multiple images into a single ImageList

Analyzing a BUI instance of the
application in Chrome's Developer
Tools confirmed that the number of
HTTP requests dropped from 28 down
to just 1. Using the ImageList will not
only drastically reduce the amount of
communication between the client and
server, but the resultant ImageList file
will almost always compress more than
the individual images (due to factors
like discarding redundant header
information). Our example showed that
our changes not only eliminated dozens
of HTTP requests, but also reduced the
amount of data sent – from a combined
size of 27 KB for the 28 separate
images to just 10 KB for the ImageList.
Combining your application’s images
in this fashion optimizes network
performance, reduces the effect
of latency, and best of all, benefits
traditional thin client and BUI apps
alike.

CSS Image
Optimizations for BUI
If your BUI app uses multiple images
as part of its CSS styling, CSS Sprites
are the logical way to optimize them to
reduce HTTP requests. The webpage
css-tricks.com/css-sprites has a good
overview of sprites with an example
that shows how combining images into
a single sprite reduces the number of
HTTP requests from 10 down to 1 and
reduces the total size of the images
from 20.5 KB down to 13 KB. Even
better, as images sometimes download
on a ‘lazy’ or ‘as-needed’ basis, it is
far better aesthetically to use a single
image.

When the browser displays a control
defined with separate images for the
various states (normal, hovered, and
active), it loads each image the first
time it is needed. So loading the image
files for the hovered and active states
occurs when the user first interacts
with the control. This takes a fraction
of a second and the control flashes as
the original image is removed and the
new image loads and displays. When
using a single sprite image, the entire
image is loaded at the start and already
cached by the browser when it comes
time to show the other controls states
so the transition occurs instantly without
any visual disruption. Various free and
commercial sprite editors exist, making
this potentially time-consuming and
exacting task a piece of cake. Some
editors, such as the one shown in

http://links.basis.com/12toc
https://www.poweredbybbj.com/apps/BUI-Mortgage
http://pmt.sourceforge.net/pngcrush/
http://links.basis.com/rbe
https://developers.google.com/chrome-developer-tools/docs/overview
http://css-tricks.com/css-sprites/

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Optimizing for Retina Displays
“Can BUI apps take advantage of one of the new ‘Retina Displays’?” is a question that has started to pop up more
frequently lately. With the initial release of the iPhone 4, and with the recent releases of the latest iPad and MacBook
Pros, Apple has been touting their Retina Displays. The idea is that these devices utilize high pixel density, meaning
that they pack a huge amount of pixels into the device’s screen. The result is a pixel density of more than 300 pixels per
inch, even better than some of the early laser printers. The pixels are so small that they cannot be individually discerned
when holding the device at a reasonable reading distance, meaning that text and graphics are ultra-sharp. Many
Android-based phones also utilize high pixel density and their screen support API covers devices with various pixel
densities and defines concepts such as density independence.

So what does this all mean to BBj BUI programmers – are their apps going to be able to play in the high-resolution
game? The answer is a resounding “Yes!” and in most cases, programmers will not have to do anything special or make
any code changes. Our aforementioned BUI Mortgage demo
serves as a good example of this as seen in Figure 4, which
displays a small section of the app running on the new iPad
with its whopping 2048x1536 pixel screen resolution.

The titles, labels, and input controls are all razor-sharp and
match the high-resolution native iPad apps because most
BBjControls and text fall into the ‘vector’ category. Vector
means that they can scale well without degrading in quality.
However, developer supplied images used in custom CSS
fall into the ‘raster’ category, which means that they degrade
dramatically when enlarged.

Figure 3, not only take care of combining images and optimizing layout, but also write all of the CSS code for you!

Language/Interpreter

44

Figure 3. A sprite editor that combines images and writes the supporting CSS code

Figure 4. High resolution BUI app running on a Retina Display iPad

http://links.basis.com/12toc
http://developer.android.com/guide/practices/screens_support.html
https://www.poweredbybbj.com/apps/BUI-Mortgage

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Optimizing BUI CSS Images for Retina Displays
Optimizing custom images for a high pixel density display is
possible given CSS’ media query capability. The CSS in
Figure 5 specifies a background image (my-image.png) for
regular displays. But when the client browser is using a pixel-
doubled display such as the iPhone or iPad, a different image
(my-image@2x.png) is used instead. This version of the image has
four times the resolution, twice as many pixels in both the X and Y
direction.

Figure 5. Defining regular and high-resolution images for Retina Displays

The @media portion of the CSS file allows developers to specify
selectors that the client browser will use when viewed on a
computer or mobile device with a pixel-doubled screen. The
redefinition of .my-selector with the high-resolution image will
take precedence over the initial definition due to CSS’ cascading
order. Because they both have the same weight, origin, and
specificity, the last definition ‘wins’ and is the one that the browser
will use. The final trick involves setting the background-size
property for the selector to the same 200x100 pixels specified in
the original definition. In essence, we are directing the browser to
display the pixel-doubled image to our ‘preferred’ size of 200x100
pixels. If we omitted the background-size property, the image
would display twice as wide and tall as the normal resolution
image. By specifying the background-size property, we force it
to use the native display pixels to squeeze it into the same screen
real estate.

We used this same technique for the BUI Tip Calculator demo
targeted for the iPhone. The app uses a custom image defined
in a CSS file to display an interactive service rating as a series
of stars. Simply tap on a star to define the level of service you
received and the tip adjusts automatically. The “How was the
service?” label is a BBjStaticText control, so it looks perfect on

a pixel-doubled display without any extra work on our part.
However, because the image used for the star rating system
was defined as a regular image in a custom CSS file, it
did not scale well and appeared blurry when viewed on the
iPhone 4 and above, as shown in Figure 6.

Language/Interpreter

45

• Try out these BUI demos
 • Mortgage Amortization Schedule at links.basis.com/buimortgage
 • Tip Calculator at links.basis.com/buitip
 • More at links.basis.com/buidemos
• For a more in-depth discussion of image formats and criteria to help determine the best
 image formats, review Image File Formats at en.wikipedia.org/wiki/Image_formats
• Check out these tools
 • Pngcrush at bit.ly/4uyudU
 • Chrome Developer Tools at bit.ly/HNgdC0
 • Android Screen Support at bit.ly/mithf

Figure 6. Comparing the non-optimized image (top) and retina-optimized
image (bottom)

To make the application look great on the Retina Display
iPhones, we created a version of the star image that was pixel-
doubled – twice as many pixels for both the width and the
height. This ensures that the image used for the rating system
will be of the highest quality for every device.

Summary
As computer applications have matured and migrated from
CUI to GUI and now to BUI, images have become an integral
part of most of these applications. In addition to adding
aesthetic value, when used wisely they improve usability and
provide interactive feedback. Despite their importance, they
are sometimes treated as an afterthought and even though
developers typically profile their application for performance,
they may overlook the importance of optimizing their
application images as well.

Taking the time to analyze and compress images is an
important opportunity to improve the launch speed of an
application while preserving image quality. Fortunately,
optimizing images is fairly easy and quick, especially with
some of the advanced compression tools available. You can
now accomplish this task yourself instead of delegating it to
a dedicated graphic artist. BUI applications look great out-of-
the-box on the new Retina and pixel-doubled displays without
resorting to custom code. If your BUI app happens to utilize
images in a custom CSS app, with a little CSS kung fu, you
can make image degradation a distant memory and produce a
fantastic looking app!

http://links.basis.com/12toc
https://www.poweredbybbj.com/apps/BUI-Tip-Calculator
http://links.basis.com/buimortgage
http://links.basis.com/buitip
http://links.basis.com/buidemos
http://en.wikipedia.org/wiki/Image_formats
http://bit.ly/HNgdC0
http://bit.ly/4uyudU
http://bit.ly/mithf

