
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

f you’re not familiar with free,
open source versioning tools, you
might think we grossly overlooked
a misspelling in the title and used

poor grammar to boot! Now that we
have your attention, read on.

Recently, BASIS incorporated Git
distributed revision control and source
code management (git-scm.com)
into the AddonSoftware® by Barista®
(Addon) upgrade procedure to make
upgrading customized Addon packages
easier than ever before. In this article,
we examine the Addon upgrade
process prior to the introduction of Git,

 I

By Chris Hawkins
Software Developer

By Shaun Haney
Quality Assurance
Engineer

‘Git’dy Up, Developers!

63

Development Tools

what Git is, how it adds new intelligence to the Addon upgrade process, and Git’s
overall role in an Addon upgrade.

Upgrading Customized AddonSoftware Installations
One of the advantages of developing Addon within the Barista Application Framework
is Barista’s application project structure. Developers wanting to make customizations
to Addon can create a new Barista project and save customized forms, callpoints,
reports, publics, custom classes, etc., inside that project file structure. This separation
ensures that it preserves customizations when upgrading Addon. After installing a new
version of Addon, the Barista Install Application Wizard (IAW) allows developers to re-
install these custom projects by importing customized forms and/or data tables back
into the standard product.

While this is the recommended process for making customizations, it is possible that
some developers have modified the standard product directly or have blended some
modifications in a separate project file structure with others made directly to the core
product. In addition, the emphasis of the Barista IAW is on forms and/or data tables.
The wizard doesn’t reconcile changes in callpoint code or other code not related to the
user interface.

Regardless of how customizations were made, the result is that Addon’s modifications
suit customers’ needs. In many environments, such customizations leave the product
“stuck in time,” with no possibility of an application upgrade. With Barista and Git,
developers can now modify both the user interface as well as other code, and still
realize the benefits of an upgrade!

Life Before Git
Prior to Git, developers could use the Barista IAW to incorporate form or table
modifications back into standard Addon. However, there was no automated way
to preserve those customizations if they were made directly against the Addon
installation (i.e., in the Addon file structure itself). In addition, the wizard is not
concerned with changes in other source code files such as callpoints, reports, publics,
etc., so there was no easy way to see changes in the standard code and determine
if they should be included in the customized counterparts. In terms of callpoints,
additional code that developers may have added to run before or after the standard

http://git-scm.com/
http://links.basis.com/12toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Clone the Git archive directly from BASIS. The Git archive contains every
version of Addon.

Roll the archive back to the same version as the customer's current version of Addon.

Copy the customized Addon code into the archive.

 • If developers made customer customizations directly to the Addon file
 structure, then they could copy that core code into the archive as a new revision.

 • If developers maintain the code in a separate Barista project, BASIS has
 created a set of utilities that copy the code modifications into the archive.
 Developers can then check these modifications in to recreate the new revision.

After checking in the new revision, the developer rolls the archive forward to
incorporate any changes made since the customer’s current version all the
way to the new version. Most of the changes will merge in smoothly, but a
handful of changes will likely result in conflicts.

Review and correct the conflicts, and commit each resolved file. Once the files
are committed, Git has a brand new revision containing the customized code
and upgraded code that comes with the latest version of Addon.

Move the upgraded code back from the Addon archive to the customer's copy
of Addon.

 • If developers made customer customizations directly to the Addon file
 structure, they can copy the upgraded code directly to the Addon core.

 • If developers maintain customer code in a separate Barista project, BASIS
 created a set of utilities to move the upgraded code back to the Barista project.

64

Development Tools

So, how exactly does this work? Let’s first look at a generic non-Addon scenario for
using Git. Let’s say your favorite free text editor is available from a public Git archive
and you decide that your company needs some specific enhancements for highlighting
part numbers with a color keyed to the department that produces that item. Since
this feature is unique to your company only and the editor does not provide plug-in
support, you decide to “clone” the archive and add the needed functionality into your
own version of the editor. So you use the git clone command to copy the Git archive
to your system. Then you checkout the latest version of the source code that actually
appears in your Git directory so you can make changes in place. You add the features
you want and then check them in. A new checkin appears in your archive that is not
present in the remote archive.

A few months pass, and you read that they’ve enhanced the way that the text editor
finds and highlights text. You want this enhancement but are concerned that some of
their changes will overlap yours. This time, you pull the new version from the remote
archive and Git attempts to merge its changes on top of yours automatically. Wherever
you have changed code but the remote archive hasn’t, your change is preserved.
Wherever the remote archive has changed code, but yours has not, the remote archive
change is automatically applied. However, if there are changes on the same line in
both archives, Git denotes the conflict and will not complete the merge as a brand new
revision until you resolve the conflict and commit your change. The total number of
conflicts is typically only a small fraction of the total number of merges Git performs.

Git’s automatic merge process allows you to focus only where it actually needs your
intervention – on pieces of code that you changed and have also changed in the
original source. Once you resolve the conflicts and commit the files, Git creates a new
revision of the code that incorporates both your customizations and the original source.
In this way, Git allows you to maintain custom code while still being able to incorporate
upgraded code from the original source.

Git Brings New Intelligence to the Upgrade Process
With its ability to perform automatic merges, detect conflicts, and remember custom
changes, Git speeds up the Addon upgrade process and ensures a complete upgrade.
The basic steps in the Git cycle are listed below and illustrated in Figure 1, in which
Addon revisions in Git appear as layers of an onion. Specific processing steps depend
on whether customizations were made directly into the Addon source code or saved in
a separate Barista project file system.

1.

2.
3.

4.

5.

6.

callpoint may be fine, but if the developer
took a copy from a standard callpoint
and augmented it to run instead of
the standard, there was no easy way
to see if subsequent changes to the
standard should be incorporated into
their “instead-of” callpoints. You can
imagine that analyzing source code could
be a tedious process; VARs either had
to perform three-way comparisons by
hand – comparing the original Addon to
the customized version and then to the
new Addon – or write their own in-house
scripts to upgrade their code.

In the pre-Git life, there was no single,
comprehensive process for upgrading
Addon. Each process was specific to
the company requiring the upgrade.
Furthermore, manual upgrades
delivered incomplete or “hybrid” versions
of Addon where not all of the customer’s
Addon source is upgraded, resulting in
files from different versions of Addon
coexisting in the same installation.
Last but not least, when using in-house
procedures for upgrades, there often
was no mechanism for remembering
or recording decisions made in past
upgrades. In these cases, the same
questions, like whether to replace a
piece of code with a newer version,
typically resurfaced repeatedly with each
upgrade.

What is Git?
To address the dilemma of having highly
customized code in an old version of
Addon, BASIS incorporated Git into
Addon’s upgrade process. But how
exactly would Git solve this?

Git is a distributed source management
control system. Linus Torvalds and
other open source developers originally
designed Git as a replacement for
BitKeeper, previously the versioning
system of choice for maintaining the
Linux kernel. Much like CVS and
Subversion, Git tracks file changes so
users can access past versions of their
files. Unlike Subversion and CVS, Git
is a distributed revision system in which
the user actually obtains a copy of the
entire archive and works with their copy
locally, rather than only checking out a
single revision of the files from a central
server. Having the entire archive instead
of a single revision actually allows the
user to keep their own custom version of
the archive, while still allowing that user
to get updates from the original archive
or even other customized copies of the
original archive.

http://en.wikipedia.org/wiki/Linus_Torvalds
http://en.wikipedia.org/wiki/BitKeeper
http://en.wikipedia.org/wiki/Concurrent_Versions_System
http://en.wikipedia.org/wiki/Subversion
http://links.basis.com/12toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Figure 1. The basic steps in the Git cycle

1.

3.
4-6.

2.

Copy, Upgrade, Install the Project
In order to upgrade the customization project via Git, opt to copy, not install, that
project. Once the project is copied, you'll use the Git process to upgrade the project,
and then use the Barista IAW to install it into the new Addon.

At this point, keep and use the Git archive for the next Addon upgrade so that
conflicts that occurred this time around will not need revisiting in the future.

‘Git’ the Big Picture
While Git plays a critical role in Addon’s upgrade process, it is just one step in the
whole process. Now that you're familiar with Git, let's review the entire process.

Download and Install AddonSoftware by Barista
The initial installation places Addon in the same directory structure as BBj®. BASIS
intended this copy for demo or evaluation purposes and does not recommend it for a
production installation. Once installed, use the AddonSoftware Install/Upgrade Wizard
(AIUW) to make a new instance of Addon outside of the BBj home directory. This is
the live/production version of Addon.

As mentioned, the recommended process for customizations is to use the Barista
Create Application task to set up a separate Barista project structure for your
modifications. You will save or create some files directly in the new project, and
others will be saved there automatically by Barista when using application replication
mode from the Barista Form Manager (see Customizing Barista Applications for more).

Upgrade AddonSoftware
When you're ready to upgrade to a new version of Addon, download and install the
new Addon into BBj home (overlaying the current demo or eval copy). Then use
the AIUW to perform the upgrade process. Note that the AIUW facilitates parallel
operations so users can continue to run the live production copy of Addon during
the upgrade process. Read more about the AIUW in AddonSoftware Installation and
Upgrade Processes, but in short, this wizard chains together the following tasks:

• Make a new copy of Barista and Addon in a user-specified location

• Copy backed-up administrative and syn file data from the live production
 installation

• Run the Auto-synchronize process

• Copy and/or install other Barista projects (customization projects or verticals)

65

Development Tools

For more information, read
 • Create Vertical and Customize
 Applications, Parts 1, 2, 3
 links.basis.com/baristaref
 • AddonSoftware Installation and
 Upgrade Processes
 links.basis.com/addoninstallupgr

If you are not using a separate Barista
project for customizations, then after
using the AIUW to create your new
instance of Addon, perform the Git
processes and then copy the desired
files directly into the new copy of
Addon.

Conclusion
While customer installations vary and
Git may not be the silver bullet that
slays all villains, the incorporation of
Git into the Addon upgrade process
is a huge step towards standardizing
Addon’s upgrade process and greatly
simplifying the arduous task of finding
and incorporating Addon’s upgraded
code into a custom installation. Git also
makes future upgrades even easier
than the initial upgrade by ensuring a
complete upgrade and remembering the
decisions made in previous upgrades.
For those developers who have put off
an Addon upgrade due to the difficulties
involved, Git is race horse that will “get”
you across the finish line.

Hop on today and git-dy up!

http://links.basis.com/12toc
http://links.basis.com/addoninstallupgr
http://links.basis.com/baristaref
http://links.basis.com/baristaref
http://links.basis.com/addoninstallupgr
http://links.basis.com/addoninstallupgr

