
B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

The Dialog Wizard launches and offers a suggestion of the
program path to the program that is to be generated as shown
in Figure 2; choose among the top level window IDs to steer
this session of the wizard and then click [Next].

The Dialog Wizard’s second frame shown in Figure 3 lists the
control names derived from the controls in the resource file
and allows selection of the access scope of the member field,
the variable name (or class member field) to be used in the
program, the basic type of the variable, and a flag for whether
the field is a required input. Click [Next].

This utility, as a minimum, requires a definition for the window
close event, so select the control name that represents the top
level window and either double-click on the “Close” event, or
select the “Close” event and click on the right arrow button to
add the Close event to the list of program events, as shown in
Figure 4. Click [Next].

he Merriam Webster dictionary defines dialogue
or dialog as "a conversation between two or more
persons; also: a similar exchange between a person
and something else (as a computer)." It is in this

second context that this article will delve further and describe
a new BASIS tool that allows for the creation of the program
that manages a dialog between a user and a computer.

The new Dialog Wizard, accessible from the IDE, is a modern
and powerful alternative to AppBuilder. Its key advantage
over AppBuilder is that it generates fully object-oriented BBj
programs from a resource file, automatically generating the
callbacks and the method stubs. But, quite interestingly, it also
preserves custom editing of the resultant BBj code, allowing
you to run a second or third pass of the code generator to
leverage any changes you may have made to your resource
file. It also optionally generates the automatic tool button
integration to Barista. In addition, the Dialog Wizard gives you
the ability to automatically test the resultant code, offering
a launcher to launch a GUI or BUI version of your code.
And, if that wasn’t enough, it also generates Javadoc-like
documentation from comment lines in the code!

Let’s go through the steps and see just how quick it is to go
from a resource file to a running program.

Resource File to a Running Dialog Program
After creating the resource file for a simple customer
maintenance form, right-click on the resource name in the
Filesystems navigation tree of the BASIS IDE and choose
"Run Dialog Wizard" as shown in Figure 1.

18

Development Tools

 T

By Ralph Lance
Software Engineer

The Magical Reusable Dialog Wizard

Figure 1. Filesystems option to Run Dialog Wizard

http://links.basis.com/dialogwizard
http://links.basis.com/12toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

The last panel (Figure 5) offers some selections
that we’ll visit a little later. For now, skip those by
clicking [Finish] to generate the BBj custom dialog
class program.

19

Development Tools

Figure 3. Control names from the controls in the resource file

Figure 4. Add the Close event

Figure 5. The final panel of the Dialog Wizard

Figure 2. Dialog Wizard file paths

http://links.basis.com/12toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Use a Dialog Wizard-generated Class in Conjunction With Barista
The Dialog Wizard is a productivity tool for individual dialogs that optionally can work
with Barista. In other words, Barista isn’t required to use the the Dialog Wizard or
to run dialogs generated by it but it allows for the seamless integration of the dialog
programs into Barista when so desired.

To illustrate this process, we'll run the Dialog Wizard again and make some
changes in the toolbar section. We’ll also add some code to an “Options”
toolbutton to mimic an application enabling or disabling various toolbuttons to fit
the context of the application.

First, we select where we would like to place the toolbar. In our example, we’ll place
it at the top of a maintenance form (see arrow #1 in Figure 8). In order to show the
interplay between the toolbar in our dialog and the Barista MDI, we change the type
of button used in the toolbar from menu to toolbuttons (arrow #2 in Figure 8). With
this change, we can take advantage of the toggle function (arrow #3 in Figure 8) for
showing interaction between our dialog class and Barista.

20

Development Tools

That’s all, in seconds the Wizard
generates the requisite code
automatically. Next, simply run
the program and a small selection
dialog then appears (Figure 6)
offering choices to test the program
in either GUI or BUI (Figure 7) or to
rerun the Wizard.

Figure 6. Test choices

One thing to note is the Dialog Wizard
does not use data files, per se, for
settings entered or chosen in the
wizard for program generation. The
program code itself contains this data.
Through the use of identifiable begin
and end code-blocks, for example,
rem /** DLGWIZ_DDX_BEGIN **/
and its matching end-block
rem /** DLGWIZ_DDX_END **/,
the wizard knows where to look for
this data and parses what it needs
from the program code. Any code
outside of these blocks is ignored
and will remain intact during the
regeneration process.

Figure 8. Defining the toolbar for Barista integration

Figure 7. Test samples in GUI (left) and/or BUI (right)

1

2

3

http://links.basis.com/12toc

B A S I S I n t e r n a t i o n a l A d v a n t a g e • V o l u m e 1 6 • D e c e m b e r 2 0 1 2 links.basis.com/12toc

Click [Finish] to regenerate the program
automatically. The code shown in Figure 9
now contains method stubs for all of the
toolbuttons on the toolbar.

Next, we add a little bit of code shown in
Figure 10 to the "Options" toolbutton
to enable and disable the four navigation
buttons when the "Options" button is
clicked.

These two methods are available for enabling
and disabling toolbar buttons in the dialog
as well as the corresponding toolbar button
and menu item, for running the dialog class
in Barista.

The new code lives outside any Dialog Wizard
begin and end blocks, and is therefore

preserved between
program generations. If
we now run our program
in GUI, and click on the
[Options] button, we will
see the record navigation
buttons toggle between
an enabled and disabled
state. Additionally, if we run
this class inside of Barista
(see Figure 11), we also
see that the corresponding
toolbuttons and menu

items in the Barista MDI match the enabled
state of the navigation buttons on our form.

Summary
The new Dialog Wizard is great for rapid
application development of your GUI apps,
your BUI apps, and your custom dialogs that
may not fit well into the core Barista data
dictionary driven paradigm. You can create
hand-crafted code and very easily plumb it
into Barista. The Dialog Wizard encourages
good development practices, as it results
in documented object oriented code. It is
also flexible enough to handle multiple
executions against resource files that
change over time as the program matures.
See for yourself how helpful it can be on
your next coding project!

Figure 9. Generated code for the toolbuttons

Figure 10. Code to enable/disable the toolbar buttons

21

Development Tools

Figure 11. All record navigation buttons are disabled as a result of pressing [Options]

See Dialog Wizard in the
online documentation at
links.basis.com/dialogwizard

http://links.basis.com/dialogwizard
http://links.basis.com/12toc

